# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle.fluid as fluid def merge(teacher_program, student_program, data_name_map, place, scope=fluid.global_scope(), name_prefix='teacher_'): """ Merge teacher program into student program and add a uniform prefix to the names of all vars in teacher program Args: teacher_program(Program): The input teacher model paddle program student_program(Program): The input student model paddle program data_map_map(dict): Describe the mapping between the teacher var name and the student var name place(fluid.CPUPlace()|fluid.CUDAPlace(N)): This parameter represents paddle run on which device. scope(Scope): The input scope name_prefix(str): Name prefix added for all vars of the teacher program. Return(Program): Merged program. """ teacher_program = teacher_program.clone(for_test=True) for teacher_var in teacher_program.list_vars(): skip_rename = False if teacher_var.name != 'fetch' and teacher_var.name != 'feed': if teacher_var.name in data_name_map.keys(): new_name = data_name_map[teacher_var.name] if new_name == teacher_var.name: skip_rename = True else: new_name = name_prefix + teacher_var.name if not skip_rename: # scope var rename old_var = scope.var(teacher_var.name).get_tensor() renamed_var = scope.var(new_name).get_tensor() renamed_var.set(np.array(old_var), place) # program var rename renamed_var = teacher_program.global_block()._rename_var( teacher_var.name, new_name) for teacher_var in teacher_program.list_vars(): if teacher_var.name != 'fetch' and teacher_var.name != 'feed': # student program add var new_var = student_program.global_block()._clone_variable( teacher_var, force_persistable=False) new_var.stop_gradient = True for block in teacher_program.blocks: for op in block.ops: if op.type != 'feed' and op.type != 'fetch': inputs = {} outputs = {} attrs = {} for input_name in op.input_names: inputs[input_name] = [ block.var(in_var_name) for in_var_name in op.input(input_name) ] for output_name in op.output_names: outputs[output_name] = [ block.var(out_var_name) for out_var_name in op.output(output_name) ] for attr_name in op.attr_names: attrs[attr_name] = op.attr(attr_name) student_program.global_block().append_op( type=op.type, inputs=inputs, outputs=outputs, attrs=attrs) return student_program def fsp_loss(teacher_var1_name, teacher_var2_name, student_var1_name, student_var2_name, program=fluid.default_main_program()): """ Combine variables from student model and teacher model by fsp-loss. Args: teacher_var1_name(str): The name of teacher_var1. teacher_var2_name(str): The name of teacher_var2. Except for the second dimension, all other dimensions should be consistent with teacher_var1. student_var1_name(str): The name of student_var1. student_var2_name(str): The name of student_var2. Except for the second dimension, all other dimensions should be consistent with student_var1. program(Program): The input distiller program. default: fluid.default_main_program() Return(Variable): fsp distiller loss. """ teacher_var1 = program.global_block().var(teacher_var1_name) teacher_var2 = program.global_block().var(teacher_var2_name) student_var1 = program.global_block().var(student_var1_name) student_var2 = program.global_block().var(student_var2_name) teacher_fsp_matrix = fluid.layers.fsp_matrix(teacher_var1, teacher_var2) student_fsp_matrix = fluid.layers.fsp_matrix(student_var1, student_var2) fsp_loss = fluid.layers.reduce_mean( fluid.layers.square(student_fsp_matrix - teacher_fsp_matrix)) return fsp_loss def l2_loss(teacher_var_name, student_var_name, program=fluid.default_main_program()): """ Combine variables from student model and teacher model by l2-loss. Args: teacher_var_name(str): The name of teacher_var. student_var_name(str): The name of student_var. program(Program): The input distiller program. default: fluid.default_main_program() Return(Variable): l2 distiller loss. """ student_var = program.global_block().var(student_var_name) teacher_var = program.global_block().var(teacher_var_name) l2_loss = fluid.layers.reduce_mean( fluid.layers.square(student_var - teacher_var)) return l2_loss def soft_label_loss(teacher_var_name, student_var_name, program=fluid.default_main_program(), teacher_temperature=1., student_temperature=1.): """ Combine variables from student model and teacher model by soft-label-loss. Args: teacher_var_name(str): The name of teacher_var. student_var_name(str): The name of student_var. program(Program): The input distiller program. default: fluid.default_main_program() teacher_temperature(float): Temperature used to divide teacher_feature_map before softmax. default: 1.0 student_temperature(float): Temperature used to divide student_feature_map before softmax. default: 1.0 Return(Variable): l2 distiller loss. """ student_var = program.global_block().var(student_var_name) teacher_var = program.global_block().var(teacher_var_name) student_var = fluid.layers.softmax(student_var / student_temperature) teacher_var = fluid.layers.softmax(teacher_var / teacher_temperature) teacher_var.stop_gradient = True soft_label_loss = fluid.layers.reduce_mean( fluid.layers.cross_entropy( student_var, teacher_var, soft_label=True)) return soft_label_loss def loss(loss_func, program=fluid.default_main_program(), **kwargs): """ Combine variables from student model and teacher model by self defined loss. Args: program(Program): The input distiller program. default: fluid.default_main_program() loss_func(function): The user self defined loss function. Return(Variable): self defined distiller loss. """ func_parameters = {} for item in kwargs.items(): if isinstance(item[1], str): func_parameters.setdefault(item[0], program.global_block().var(item[1])) else: func_parameters.setdefault(item[0], item[1]) loss = loss_func(**func_parameters) return loss