# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys sys.path.append("../") import unittest from static_case import StaticCase import paddle import paddle.fluid as fluid from paddleslim.prune import Pruner from static_case import StaticCase from layers import conv_bn_layer class TestPrune(StaticCase): def test_concat(self): main_program = fluid.Program() startup_program = fluid.Program() # X # conv1 conv2-->concat conv3-->sum-->out # | ^ | ^ # |____________| |____________________| # with fluid.program_guard(main_program, startup_program): input = fluid.data(name="image", shape=[None, 3, 16, 16]) conv1 = conv_bn_layer(input, 8, 3, "conv1") conv2 = conv_bn_layer(input, 8, 3, "conv2", sync_bn=True) tmp = fluid.layers.concat([conv1, conv2], axis=1) conv3 = conv_bn_layer(input, 16, 3, "conv3", bias=None) out = conv3 + tmp shapes = {} for param in main_program.global_block().all_parameters(): shapes[param.name] = param.shape place = fluid.CPUPlace() exe = fluid.Executor(place) scope = fluid.Scope() exe.run(startup_program, scope=scope) pruner = Pruner() # test backward search of concat pruned_program, _, _ = pruner.prune( main_program, scope, params=["conv3_weights"], ratios=[0.5], place=place, lazy=False, only_graph=True, param_backup=None, param_shape_backup=None) shapes = { "conv3_weights": (8, 3, 3, 3), "conv2_weights": (4, 3, 3, 3), "conv1_weights": (4, 3, 3, 3) } for param in pruned_program.global_block().all_parameters(): if "weights" in param.name and "conv2d" in param.name: self.assertTrue(shapes[param.name] == param.shape) # test forward search of concat pruned_program, _, _ = pruner.prune( main_program, scope, params=["conv1_weights", "conv2_weights"], ratios=[0.5, 0.5], place=place, lazy=False, only_graph=False, param_backup=None, param_shape_backup=None) shapes = { "conv1_weights": (4, 3, 3, 3), "conv1_bn_scale": (4, ), "conv1_bn_variance": (4, ), "conv1_bn_mean": (4, ), "conv1_bn_offset": (4, ), "conv2_weights": (4, 3, 3, 3), "sync_batch_norm_0.w_0": (4, ), "sync_batch_norm_0.w_1": (4, ), "conv2_bn_scale": (4, ), "conv2_bn_offset": (4, ), "conv3_weights": (8, 3, 3, 3), "conv3_bn_mean": (8, ), "conv3_bn_offset": (8, ), "conv3_bn_scale": (8, ), "conv3_bn_variance": (8, ), "conv3_out.b_0": (8, ), } for param in pruned_program.global_block().all_parameters(): if "weights" in param.name and "conv2d" in param.name: self.assertTrue(shapes[param.name] == param.shape) class TestSplit(StaticCase): def test_split(self): main_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(main_program, startup_program): input = fluid.data(name="image", shape=[None, 3, 16, 16]) conv1 = conv_bn_layer(input, 8, 3, "conv1") conv2 = conv_bn_layer(input, 4, 3, "conv2") split_0, split_1 = paddle.split(conv1, 2, axis=1) add = split_0 + conv2 out = conv_bn_layer(add, 4, 3, "conv3") out1 = conv_bn_layer(split_1, 4, 4, "conv4") shapes = {} for param in main_program.global_block().all_parameters(): shapes[param.name] = param.shape place = fluid.CPUPlace() exe = fluid.Executor(place) scope = fluid.Scope() exe.run(startup_program, scope=scope) pruner = Pruner() # test backward search of concat pruned_program, _, _ = pruner.prune( main_program, scope, params=["conv2_weights"], ratios=[0.5], place=place, lazy=False, only_graph=True, param_backup=None, param_shape_backup=None) shapes = { "conv1_weights": (6, 3, 3, 3), "conv2_weights": (2, 3, 3, 3), "conv3_weights": (4, 2, 3, 3), "conv4_weights": (4, 4, 3, 3), } for param in pruned_program.global_block().all_parameters(): if "weights" in param.name and "conv2d" in param.name: self.assertTrue(shapes[param.name] == param.shape) class TestMul(StaticCase): def test_mul(self): main_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(main_program, startup_program): input = fluid.data(name="image", shape=[None, 3, 16, 16]) conv1 = conv_bn_layer(input, 8, 3, "conv1") fc_0 = paddle.fluid.layers.fc(conv1, size=10) fc_1 = paddle.fluid.layers.fc(fc_0, size=10) place = fluid.CPUPlace() exe = fluid.Executor(place) scope = fluid.Scope() exe.run(startup_program, scope=scope) pruner = Pruner() # test backward search of concat pruned_program, _, _ = pruner.prune( main_program, scope, params=["conv1_weights"], ratios=[0.5], place=place, lazy=False, only_graph=True, param_backup=None, param_shape_backup=None) shapes = { "conv1_weights": (4, 3, 3, 3), "fc_0.w_0": (1024, 10), "fc_1.w_0": (10, 10) } for param in pruned_program.global_block().all_parameters(): if param.name in shapes.keys(): self.assertTrue(shapes[param.name] == param.shape) if __name__ == '__main__': unittest.main()