# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle.fluid.dygraph.jit as jit from ..core import GraphWrapper __all__ = ["dygraph_flops", "flops", "dygrpah_macs", "macs"] def dygraph_flops(model, inputs, only_conv=True, detail=False): """ Get FLOPs of dygraph model. Args: model: The dygraph model to calculate FLOPs. inputs: The inputs of the model, used to calculate FLOPs. only_conv(bool): Just return number of mul-adds in convolution and FC layer if `only_conv` is true. Default: True. detail(bool): Whether to return detail of each convolution layer. Default: False. """ _, program, _, _, _ = jit._trace(model, inputs) graph = GraphWrapper(program) return _graph_cals( graph, only_conv=only_conv, count='FLOPs', detail=detail) def flops(program, only_conv=True, detail=False): """ Get FLOPS of target graph. Args: program(Program): The program used to calculate FLOPS. only_conv(bool): Just return number of mul-adds in convolution and FC layer if `only_conv` is true. default: True. detail(bool): Whether to return detail of each convolution layer. Default: False. Return: If `detail` is true, then return a tuple in format `(FLOPs, details)`, otherwise it will just return `FlOPs` FLOPs(int): The FLOPs of target network. details(dict): The key is the parameter name of convlution layer and the value is the FLOPs of each convolution layer. """ graph = GraphWrapper(program) return _graph_cals( graph, only_conv=only_conv, count='FLOPs', detail=detail) def dygraph_macs(model, inputs, only_conv=False, detail=False): """ Get FLOPs of dygraph model. Args: model: The dygraph model to calculate FLOPs. inputs: The inputs of the model, used to calculate FLOPs. only_conv(bool): Just return number of mul-adds in convolution and FC layer if `only_conv` is true. Default: True. detail(bool): Whether to return detail of each convolution layer. Default: False. """ _, program, _, _, _ = jit._trace(model, inputs) graph = GraphWrapper(program) return _graph_flops( graph, only_conv=only_conv, count='MACs', detail=detail) def macs(program, only_conv=True, detail=False): """ Get FLOPS of target graph. Args: program(Program): The program used to calculate FLOPS. only_conv(bool): Just return number of mul-adds in convolution and FC layer if `only_conv` is true. default: True. detail(bool): Whether to return detail of each convolution layer. Default: False. Return: If `detail` is true, then return a tuple in format `(FLOPs, details)`, otherwise it will just return `FlOPs` FLOPs(int): The FLOPs of target network. details(dict): The key is the parameter name of convlution layer and the value is the FLOPs of each convolution layer. """ graph = GraphWrapper(program) return _graph_cals( graph, only_conv=only_conv, count='MACs', detail=detail) def _graph_cals(graph, only_conv=True, count, detail=False): assert isinstance(graph, GraphWrapper) assert count.lower() in ['flops', 'macs'], "count {} not support now".format(count) flops = 0 params2flops = {} for op in graph.ops(): if op.type() in ['conv2d', 'depthwise_conv2d', 'conv2d_transpose']: filter_shape = op.inputs("Filter")[0].shape() output_shape = op.outputs("Output")[0].shape() if op.type() == 'conv2d_transpose': c_in, c_out, k_h, k_w = filter_shape else: c_out, c_in, k_h, k_w = filter_shape _, _, h_out, w_out = output_shape # c_in is the channel number of filter. It is (input_channel // groups). if count == 'MACs': out_pixel = k_h * k_w * float(c_in) else: ### count == 'FLOPs' ### add bias count in elementwise_add op out_pixel = 2 * k_h * k_w * float(c_in) - 1 op_flops = h_out * w_out * c_out * out_pixel flops += op_flops params2flops[op.inputs("Filter")[0].name()] = op_flops elif op.type() == 'pool2d' and not only_conv: if count == 'MACs': op_shape = op.outputs("Out")[0].shape() else: op_shape = op.inputs("X")[0].shape() _, c_out, h_out, w_out = op_shape k_size = op.attr("ksize") op_flops = h_out * w_out * c_out * (k_size[0]**2) flops += op_flops elif op.type() == 'mul' and not only_conv: x_shape = list(op.inputs("X")[0].shape()) y_shape = op.inputs("Y")[0].shape() if x_shape[0] == -1: x_shape[0] = 1 if count == 'MACs': op_flops = x_shape[0] * x_shape[1] * y_shape[1] else: op_flops = (2 * x_shape[0] * x_shape[1] - 1) * y_shape[1] flops += op_flops params2flops[op.inputs("Y")[0].name()] = op_flops elif op.type() in ['relu', 'sigmoid', 'relu6' ] and not only_conv: input_shape = list(op.inputs("X")[0].shape()) if input_shape[0] == -1: input_shape[0] = 1 op_flops = np.product(input_shape) flops += op_flops elif op.type() in ['batch_norm', 'instance_norm', 'layer_norm' ] and not only_conv: input_shape = list(op.inputs("X")[0].shape()) if input_shape[0] == -1: input_shape[0] = 1 ### (x - mean) * sqrt(var) op_flops = np.product(input_shape) if count == 'FLOPs': ### NOTE: if scale and bias can be none (Need to fix in bn op), it need to add more condition to determine if need to multiply 2 op_flops *= 2 flops += op_flops elif op.type() in ['elementwise_add'] and count == 'FLOPs': input_shape = list(op.inputs("X")[0].shape()) ### if inputs Y is parameter that means add bias after conv or norm if op.inputs("Y")[0].is_parameter(): if input_shape[0] == -1: input_shape[0] = 1 op_flops = np.product(input_shape) flops += op_flops if detail: return flops, params2flops else: return flops