from __future__ import division from __future__ import print_function import os import sys import logging import paddle import argparse import functools import math import time import numpy as np sys.path.append( os.path.join(os.path.dirname("__file__"), os.path.pardir, os.path.pardir)) import paddleslim from paddleslim.common import get_logger from paddleslim.analysis import dygraph_flops as flops import paddle.vision.models as models from utility import add_arguments, print_arguments import paddle.vision.transforms as T from paddle.static import InputSpec as Input from imagenet import ImageNetDataset from paddle.io import BatchSampler, DataLoader, DistributedBatchSampler from paddle.distributed import ParallelEnv _logger = get_logger(__name__, level=logging.INFO) parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) # yapf: disable add_arg('batch_size', int, 64 * 4, "Minibatch size.") add_arg('model', str, "mobilenet_v1", "The target model.") add_arg('data', str, "imagenet", "Which data to use. 'mnist' or 'imagenet'") add_arg('log_period', int, 10, "Log period in batches.") add_arg('test_period', int, 10, "Test period in epoches.") add_arg('checkpoint', str, None, "The path of checkpoint which is used for eval.") add_arg('pruned_ratio', float, None, "The ratios to be pruned.") add_arg('use_gpu', bool, True, "Whether to GPUs.") # yapf: enable model_list = models.__all__ def get_pruned_params(args, model): params = [] if args.model == "mobilenet_v1": skip_vars = ['linear_0.b_0', 'conv2d_0.w_0'] # skip the first conv2d and last linear for sublayer in model.sublayers(): for param in sublayer.parameters(include_sublayers=False): if isinstance( sublayer, paddle.nn.Conv2D ) and sublayer._groups == 1 and param.name not in skip_vars: params.append(param.name) elif args.model == "mobilenet_v2": for sublayer in model.sublayers(): for param in sublayer.parameters(include_sublayers=False): if isinstance(sublayer, paddle.nn.Conv2D): params.append(param.name) return params elif args.model == "resnet34": for sublayer in model.sublayers(): for param in sublayer.parameters(include_sublayers=False): if isinstance(sublayer, paddle.nn.Conv2D): params.append(param.name) return params else: raise NotImplementedError( "Current demo only support for mobilenet_v1, mobilenet_v2, resnet34") return params def eval(args): paddle.set_device('gpu' if args.use_gpu else 'cpu') test_reader = None if args.data == "cifar10": transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])]) val_dataset = paddle.vision.datasets.Cifar10( mode="test", backend="cv2", transform=transform) class_dim = 10 image_shape = [3, 224, 224] pretrain = False elif args.data == "imagenet": val_dataset = ImageNetDataset( "data/ILSVRC2012", mode='val', image_size=224, resize_short_size=256) class_dim = 1000 image_shape = [3, 224, 224] pretrain = True else: raise ValueError("{} is not supported.".format(args.data)) assert args.model in model_list, "{} is not in lists: {}".format(args.model, model_list) inputs = [Input([None] + image_shape, 'float32', name='image')] labels = [Input([None, 1], 'int64', name='label')] # model definition net = models.__dict__[args.model](pretrained=pretrain, num_classes=class_dim) pruner = paddleslim.dygraph.L1NormFilterPruner(net, [1] + image_shape) params = get_pruned_params(args, net) ratios = {} for param in params: ratios[param] = args.pruned_ratio print(f"ratios: {ratios}") pruner.prune_vars(ratios, [0]) model = paddle.Model(net, inputs, labels) model.prepare( None, paddle.nn.CrossEntropyLoss(), paddle.metric.Accuracy(topk=(1, 5))) model.load(args.checkpoint) model.evaluate( eval_data=val_dataset, batch_size=args.batch_size, verbose=1, num_workers=8) def main(): args = parser.parse_args() print_arguments(args) eval(args) if __name__ == '__main__': main()