import os import sys import logging import paddle import argparse import functools import math import time import numpy as np import paddle.fluid as fluid from paddleslim.prune import AutoPruner from paddleslim.common import get_logger from paddleslim.analysis import flops sys.path.append(sys.path[0] + "/../") import models from utility import add_arguments, print_arguments _logger = get_logger(__name__, level=logging.INFO) parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) # yapf: disable add_arg('batch_size', int, 64 * 4, "Minibatch size.") add_arg('use_gpu', bool, True, "Whether to use GPU or not.") add_arg('model', str, "MobileNet", "The target model.") add_arg('pretrained_model', str, "../pretrained_model/MobileNetV1_pretained", "Whether to use pretrained model.") add_arg('lr', float, 0.1, "The learning rate used to fine-tune pruned model.") add_arg('lr_strategy', str, "piecewise_decay", "The learning rate decay strategy.") add_arg('l2_decay', float, 3e-5, "The l2_decay parameter.") add_arg('momentum_rate', float, 0.9, "The value of momentum_rate.") add_arg('num_epochs', int, 120, "The number of total epochs.") add_arg('total_images', int, 1281167, "The number of total training images.") parser.add_argument('--step_epochs', nargs='+', type=int, default=[30, 60, 90], help="piecewise decay step") add_arg('config_file', str, None, "The config file for compression with yaml format.") add_arg('data', str, "mnist", "Which data to use. 'mnist' or 'imagenet'") add_arg('log_period', int, 10, "Log period in batches.") add_arg('test_period', int, 10, "Test period in epoches.") # yapf: enable model_list = [m for m in dir(models) if "__" not in m] def piecewise_decay(args): step = int(math.ceil(float(args.total_images) / args.batch_size)) bd = [step * e for e in args.step_epochs] lr = [args.lr * (0.1**i) for i in range(len(bd) + 1)] learning_rate = fluid.layers.piecewise_decay(boundaries=bd, values=lr) optimizer = fluid.optimizer.Momentum( learning_rate=learning_rate, momentum=args.momentum_rate, regularization=fluid.regularizer.L2Decay(args.l2_decay)) return optimizer def cosine_decay(args): step = int(math.ceil(float(args.total_images) / args.batch_size)) learning_rate = fluid.layers.cosine_decay( learning_rate=args.lr, step_each_epoch=step, epochs=args.num_epochs) optimizer = fluid.optimizer.Momentum( learning_rate=learning_rate, momentum=args.momentum_rate, regularization=fluid.regularizer.L2Decay(args.l2_decay)) return optimizer def create_optimizer(args): if args.lr_strategy == "piecewise_decay": return piecewise_decay(args) elif args.lr_strategy == "cosine_decay": return cosine_decay(args) def compress(args): train_reader = None test_reader = None if args.data == "mnist": import paddle.dataset.mnist as reader train_reader = reader.train() val_reader = reader.test() class_dim = 10 image_shape = "1,28,28" elif args.data == "imagenet": import imagenet_reader as reader train_reader = reader.train() val_reader = reader.val() class_dim = 1000 image_shape = "3,224,224" else: raise ValueError("{} is not supported.".format(args.data)) image_shape = [int(m) for m in image_shape.split(",")] assert args.model in model_list, "{} is not in lists: {}".format( args.model, model_list) image = fluid.layers.data(name='image', shape=image_shape, dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') # model definition model = models.__dict__[args.model]() out = model.net(input=image, class_dim=class_dim) cost = fluid.layers.cross_entropy(input=out, label=label) avg_cost = fluid.layers.mean(x=cost) acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1) acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5) val_program = fluid.default_main_program().clone(for_test=True) opt = create_optimizer(args) opt.minimize(avg_cost) place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) if args.pretrained_model: def if_exist(var): return os.path.exists( os.path.join(args.pretrained_model, var.name)) fluid.io.load_vars(exe, args.pretrained_model, predicate=if_exist) val_reader = paddle.batch(val_reader, batch_size=args.batch_size) train_reader = paddle.batch( train_reader, batch_size=args.batch_size, drop_last=True) train_feeder = feeder = fluid.DataFeeder([image, label], place) val_feeder = feeder = fluid.DataFeeder( [image, label], place, program=val_program) def test(epoch, program): batch_id = 0 acc_top1_ns = [] acc_top5_ns = [] for data in val_reader(): start_time = time.time() acc_top1_n, acc_top5_n = exe.run( program, feed=train_feeder.feed(data), fetch_list=[acc_top1.name, acc_top5.name]) end_time = time.time() if batch_id % args.log_period == 0: _logger.info( "Eval epoch[{}] batch[{}] - acc_top1: {}; acc_top5: {}; time: {}". format(epoch, batch_id, np.mean(acc_top1_n), np.mean(acc_top5_n), end_time - start_time)) acc_top1_ns.append(np.mean(acc_top1_n)) acc_top5_ns.append(np.mean(acc_top5_n)) batch_id += 1 _logger.info("Final eval epoch[{}] - acc_top1: {}; acc_top5: {}". format(epoch, np.mean(np.array(acc_top1_ns)), np.mean(np.array(acc_top5_ns)))) return np.mean(np.array(acc_top1_ns)) def train(epoch, program): build_strategy = fluid.BuildStrategy() exec_strategy = fluid.ExecutionStrategy() train_program = fluid.compiler.CompiledProgram( program).with_data_parallel( loss_name=avg_cost.name, build_strategy=build_strategy, exec_strategy=exec_strategy) batch_id = 0 for data in train_reader(): start_time = time.time() loss_n, acc_top1_n, acc_top5_n = exe.run( train_program, feed=train_feeder.feed(data), fetch_list=[avg_cost.name, acc_top1.name, acc_top5.name]) end_time = time.time() loss_n = np.mean(loss_n) acc_top1_n = np.mean(acc_top1_n) acc_top5_n = np.mean(acc_top5_n) if batch_id % args.log_period == 0: _logger.info( "epoch[{}]-batch[{}] - loss: {}; acc_top1: {}; acc_top5: {}; time: {}". format(epoch, batch_id, loss_n, acc_top1_n, acc_top5_n, end_time - start_time)) batch_id += 1 params = [] for param in fluid.default_main_program().global_block().all_parameters(): if "_sep_weights" in param.name: params.append(param.name) pruner = AutoPruner( val_program, fluid.global_scope(), place, params=params, init_ratios=[0.33] * len(params), pruned_flops=0.5, pruned_latency=None, server_addr=("", 0), init_temperature=100, reduce_rate=0.85, max_try_times=300, max_client_num=10, search_steps=100, max_ratios=0.9, min_ratios=0., is_server=True, key="auto_pruner") while True: pruned_program, pruned_val_program = pruner.prune( fluid.default_main_program(), val_program) for i in range(1): train(i, pruned_program) score = test(0, pruned_val_program) pruner.reward(score) def main(): args = parser.parse_args() print_arguments(args) compress(args) if __name__ == '__main__': main()