# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys sys.path.append("../") import paddle import unittest import paddle.fluid as fluid import numpy as np from paddleslim.nas.darts import DARTSearch from layers import conv_bn_layer class TestDARTS(unittest.TestCase): def test_darts(self): class SuperNet(fluid.dygraph.Layer): def __init__(self): super(SuperNet, self).__init__() self._method = 'DARTS' self._steps = 1 self.stem = fluid.dygraph.nn.Conv2D( num_channels=1, num_filters=3, filter_size=3, padding=1) self.classifier = fluid.dygraph.nn.Linear( input_dim=2352, output_dim=10) self._multiplier = 4 self._primitives = [ 'none', 'max_pool_3x3', 'avg_pool_3x3', 'skip_connect', 'sep_conv_3x3', 'sep_conv_5x5', 'dil_conv_3x3', 'dil_conv_5x5' ] self._initialize_alphas() def _initialize_alphas(self): self.alphas_normal = fluid.layers.create_parameter( shape=[14, 8], dtype="float32") self.alphas_reduce = fluid.layers.create_parameter( shape=[14, 8], dtype="float32") self._arch_parameters = [ self.alphas_normal, self.alphas_reduce, ] def arch_parameters(self): return self._arch_parameters def forward(self, input): out = self.stem(input) * self.alphas_normal[0][ 0] * self.alphas_reduce[0][0] out = fluid.layers.reshape(out, [0, -1]) logits = self.classifier(out) return logits def _loss(self, input, label): logits = self.forward(input) return fluid.layers.reduce_mean( fluid.layers.softmax_with_cross_entropy(logits, label)) def batch_generator(reader): def wrapper(): batch_data = [] batch_label = [] for sample in reader(): image = np.array(sample[0]).reshape(1, 28, 28) label = np.array(sample[1]).reshape(1) batch_data.append(image) batch_label.append(label) if len(batch_data) == 128: batch_data = np.array(batch_data, dtype='float32') batch_label = np.array(batch_label, dtype='int64') yield [batch_data, batch_label] batch_data = [] batch_label = [] return wrapper place = fluid.CUDAPlace(0) with fluid.dygraph.guard(place): model = SuperNet() trainset = paddle.dataset.mnist.train() validset = paddle.dataset.mnist.test() train_reader = batch_generator(trainset) valid_reader = batch_generator(validset) searcher = DARTSearch( model, train_reader, valid_reader, place, num_epochs=5) searcher.train() if __name__ == '__main__': unittest.main()