# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import numpy as np import argparse from tqdm import tqdm import paddle from paddleslim.auto_compression.config_helpers import load_config as load_slim_config from paddleslim.common import load_onnx_model from post_process import YOLOv6PostProcess, coco_metric from dataset import COCOValDataset def argsparser(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--config_path', type=str, default=None, help="path of compression strategy config.", required=True) parser.add_argument( '--devices', type=str, default='gpu', help="which device used to compress.") return parser def eval(): place = paddle.CUDAPlace(0) if FLAGS.devices == 'gpu' else paddle.CPUPlace() exe = paddle.static.Executor(place) val_program, feed_target_names, fetch_targets = load_onnx_model( global_config["model_dir"]) bboxes_list, bbox_nums_list, image_id_list = [], [], [] with tqdm( total=len(val_loader), bar_format='Evaluation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}', ncols=80) as t: for data in val_loader: data_all = {k: np.array(v) for k, v in data.items()} outs = exe.run(val_program, feed={feed_target_names[0]: data_all['image']}, fetch_list=fetch_targets, return_numpy=False) res = {} postprocess = YOLOv6PostProcess( score_threshold=0.001, nms_threshold=0.65, multi_label=True) res = postprocess(np.array(outs[0]), data_all['scale_factor']) bboxes_list.append(res['bbox']) bbox_nums_list.append(res['bbox_num']) image_id_list.append(np.array(data_all['im_id'])) t.update() coco_metric(anno_file, bboxes_list, bbox_nums_list, image_id_list) def main(): global global_config all_config = load_slim_config(FLAGS.config_path) global_config = all_config["Global"] global val_loader dataset = COCOValDataset( dataset_dir=global_config['dataset_dir'], image_dir=global_config['val_image_dir'], anno_path=global_config['val_anno_path']) global anno_file anno_file = dataset.ann_file val_loader = paddle.io.DataLoader(dataset, batch_size=1) eval() if __name__ == '__main__': paddle.enable_static() parser = argsparser() FLAGS = parser.parse_args() assert FLAGS.devices in ['cpu', 'gpu', 'xpu', 'npu'] paddle.set_device(FLAGS.devices) main()