# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import numpy as np import argparse from tqdm import tqdm import paddle from paddleslim.common import load_config as load_slim_config from paddleslim.auto_compression import AutoCompression from dataset import COCOValDataset, COCOTrainDataset from post_process import YOLOv5PostProcess, coco_metric def argsparser(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--config_path', type=str, default=None, help="path of compression strategy config.", required=True) parser.add_argument( '--save_dir', type=str, default='output', help="directory to save compressed model.") parser.add_argument( '--devices', type=str, default='gpu', help="which device used to compress.") parser.add_argument( '--eval', type=bool, default=False, help="whether to run evaluation.") return parser def eval_function(exe, compiled_test_program, test_feed_names, test_fetch_list): bboxes_list, bbox_nums_list, image_id_list = [], [], [] with tqdm( total=len(val_loader), bar_format='Evaluation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}', ncols=80) as t: for data in val_loader: data_all = {k: np.array(v) for k, v in data.items()} outs = exe.run(compiled_test_program, feed={test_feed_names[0]: data_all['image']}, fetch_list=test_fetch_list, return_numpy=False) res = {} postprocess = YOLOv5PostProcess( score_threshold=0.001, nms_threshold=0.65, multi_label=True) res = postprocess(np.array(outs[0]), data_all['scale_factor']) bboxes_list.append(res['bbox']) bbox_nums_list.append(res['bbox_num']) image_id_list.append(np.array(data_all['im_id'])) t.update() map_res = coco_metric(anno_file, bboxes_list, bbox_nums_list, image_id_list) return map_res[0] def main(): global global_config all_config = load_slim_config(FLAGS.config_path) assert "Global" in all_config, "Key 'Global' not found in config file. \n{}".format( all_config) global_config = all_config["Global"] dataset = COCOTrainDataset( dataset_dir=global_config['dataset_dir'], image_dir=global_config['train_image_dir'], anno_path=global_config['train_anno_path']) train_loader = paddle.io.DataLoader( dataset, batch_size=1, shuffle=True, drop_last=True, num_workers=0) if 'Evaluation' in global_config.keys() and global_config[ 'Evaluation'] and paddle.distributed.get_rank() == 0: eval_func = eval_function global val_loader dataset = COCOValDataset( dataset_dir=global_config['dataset_dir'], image_dir=global_config['val_image_dir'], anno_path=global_config['val_anno_path']) global anno_file anno_file = dataset.ann_file val_loader = paddle.io.DataLoader( dataset, batch_size=1, shuffle=False, drop_last=False, num_workers=0) else: eval_func = None ac = AutoCompression( model_dir=global_config["model_dir"], train_dataloader=train_loader, save_dir=FLAGS.save_dir, config=all_config, eval_callback=eval_func) ac.compress() if __name__ == '__main__': paddle.enable_static() parser = argsparser() FLAGS = parser.parse_args() assert FLAGS.devices in ['cpu', 'gpu', 'xpu', 'npu'] paddle.set_device(FLAGS.devices) main()