# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys sys.path.append("../") import unittest import paddle from paddleslim.dist import merge, soft_label from layers import conv_bn_layer from static_case import StaticCase class TestSoftLabelLoss(StaticCase): def test_soft_label_loss(self): input = paddle.static.data(name="image", shape=[None, 3, 224, 224]) conv1 = conv_bn_layer(input, 8, 3, "conv1") conv2 = conv_bn_layer(conv1, 8, 3, "conv2") student_predict = conv1 + conv2 teacher_main = paddle.static.Program() teacher_startup = paddle.static.Program() with paddle.static.program_guard(teacher_main, teacher_startup): input = paddle.static.data(name="image", shape=[None, 3, 224, 224]) conv1 = conv_bn_layer(input, 8, 3, "conv1") conv2 = conv_bn_layer(conv1, 8, 3, "conv2") sum1 = conv1 + conv2 conv3 = conv_bn_layer(sum1, 8, 3, "conv3") conv4 = conv_bn_layer(conv3, 8, 3, "conv4") sum2 = conv4 + sum1 conv5 = conv_bn_layer(sum2, 8, 3, "conv5") teacher_predict = conv_bn_layer(conv5, 8, 3, "conv6") place = paddle.CPUPlace() data_name_map = {'image': 'image'} merge(teacher_main, paddle.static.default_main_program(), data_name_map, place) merged_ops = [] for block in paddle.static.default_main_program().blocks: for op in block.ops: merged_ops.append(op.type) distill_loss = soft_label('teacher_conv6_bn_output.tmp_2', 'conv2_bn_output.tmp_2') loss_ops = [] for block in paddle.static.default_main_program().blocks: for op in block.ops: loss_ops.append(op.type) print(f"ret: {set(loss_ops).difference(set(merged_ops))}") self.assertTrue(set(merged_ops).difference(set(loss_ops)) == set()) self.assertTrue({ 'softmax_with_cross_entropy', 'softmax', 'reduce_mean' }.issubset(set(loss_ops).difference(set(merged_ops)))) if __name__ == '__main__': unittest.main()