# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import numpy as np import argparse import paddle from tqdm import tqdm from post_process import YOLOv6PostProcess, coco_metric from dataset import COCOValDataset, COCOTrainDataset from paddleslim.common import load_config, load_onnx_model from paddleslim.quant.analysis import AnalysisQuant def argsparser(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--config_path', type=str, default=None, help="path of analysis config.", required=True) parser.add_argument( '--devices', type=str, default='gpu', help="which device used to compress.") return parser def eval_function(exe, compiled_test_program, test_feed_names, test_fetch_list): bboxes_list, bbox_nums_list, image_id_list = [], [], [] with tqdm( total=len(val_loader), bar_format='Evaluation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}', ncols=80) as t: for data in val_loader: data_all = {k: np.array(v) for k, v in data.items()} outs = exe.run(compiled_test_program, feed={test_feed_names[0]: data_all['image']}, fetch_list=test_fetch_list, return_numpy=False) res = {} postprocess = YOLOv6PostProcess( score_threshold=0.001, nms_threshold=0.65, multi_label=True) res = postprocess(np.array(outs[0]), data_all['scale_factor']) bboxes_list.append(res['bbox']) bbox_nums_list.append(res['bbox_num']) image_id_list.append(np.array(data_all['im_id'])) t.update() map_res = coco_metric(anno_file, bboxes_list, bbox_nums_list, image_id_list) return map_res[0] def main(): global config config = load_config(FLAGS.config_path) input_name = 'x2paddle_image_arrays' if config[ 'arch'] == 'YOLOv6' else 'x2paddle_images' dataset = COCOTrainDataset( dataset_dir=config['dataset_dir'], image_dir=config['val_image_dir'], anno_path=config['val_anno_path'], input_name=input_name) data_loader = paddle.io.DataLoader( dataset, batch_size=1, shuffle=True, drop_last=True, num_workers=0) global val_loader dataset = COCOValDataset( dataset_dir=config['dataset_dir'], image_dir=config['val_image_dir'], anno_path=config['val_anno_path']) global anno_file anno_file = dataset.ann_file val_loader = paddle.io.DataLoader( dataset, batch_size=1, shuffle=False, drop_last=False, num_workers=0) load_onnx_model(config["model_dir"]) inference_model_path = config["model_dir"].rstrip().rstrip( '.onnx') + '_infer' analyzer = AnalysisQuant( model_dir=inference_model_path, model_filename='model.pdmodel', params_filename='model.pdiparams', eval_function=eval_function, quantizable_op_type=config['quantizable_op_type'], weight_quantize_type=config['weight_quantize_type'], activation_quantize_type=config['activation_quantize_type'], is_full_quantize=config['is_full_quantize'], data_loader=data_loader, batch_size=config['batch_size'], save_dir=config['save_dir'], ) analyzer.analysis() if __name__ == '__main__': paddle.enable_static() parser = argsparser() FLAGS = parser.parse_args() assert FLAGS.devices in ['cpu', 'gpu', 'xpu', 'npu'] paddle.set_device(FLAGS.devices) main()