# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys sys.path.append("../") import unittest import paddle from paddleslim.common import VarCollector from static_case import StaticCase sys.path.append("../demo") from models import MobileNet from layers import conv_bn_layer import paddle.dataset.mnist as reader import numpy as np class TestAnalysisHelper(StaticCase): def test_analysis_helper(self): image = paddle.static.data( name='image', shape=[None, 1, 28, 28], dtype='float32') label = paddle.static.data(name='label', shape=[None, 1], dtype='int64') model = MobileNet() out = model.net(input=image, class_dim=10) cost = paddle.nn.functional.loss.cross_entropy(input=out, label=label) avg_cost = paddle.mean(x=cost) acc_top1 = paddle.metric.accuracy(input=out, label=label, k=1) acc_top5 = paddle.metric.accuracy(input=out, label=label, k=5) optimizer = paddle.optimizer.Momentum( momentum=0.9, learning_rate=0.01, weight_decay=paddle.regularizer.L2Decay(4e-5)) optimizer.minimize(avg_cost) main_prog = paddle.static.default_main_program() places = paddle.static.cuda_places() if paddle.is_compiled_with_cuda( ) else paddle.static.cpu_places() exe = paddle.static.Executor(places[0]) def transform(x): return np.reshape(x, [1, 28, 28]) train_dataset = paddle.vision.datasets.MNIST( mode='train', backend='cv2', transform=transform) train_loader = paddle.io.DataLoader( train_dataset, places=places, feed_list=[image, label], drop_last=True, return_list=False, batch_size=64) exe.run(paddle.static.default_startup_program()) vars = ['conv2d_0.tmp_0', 'fc_0.tmp_0', 'fc_0.tmp_1', 'fc_0.tmp_2'] var_collector1 = VarCollector(main_prog, vars, use_ema=True) values = var_collector1.abs_max_run( train_loader, exe, step=None, loss_name=avg_cost.name) vars = [v.name for v in main_prog.list_vars() if v.persistable] var_collector2 = VarCollector(main_prog, vars, use_ema=False) values = var_collector2.run(train_loader, exe, step=None, loss_name=avg_cost.name) var_collector2.pdf(values) if __name__ == '__main__': unittest.main()