# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import numpy as np import paddle.fluid as fluid from paddle.fluid.param_attr import ParamAttr from .search_space_base import SearchSpaceBase from .base_layer import conv_bn_layer from .search_space_registry import SEARCHSPACE @SEARCHSPACE.register class MobileNetV2Space(SearchSpaceBase): def __init__(self, input_size, output_size, block_num, scale=1.0, class_dim=1000): super(MobileNetV2Space, self).__init__(input_size, output_size, block_num) self.head_num = np.array([3, 4, 8, 12, 16, 24, 32]) #7 self.filter_num1 = np.array([3, 4, 8, 12, 16, 24, 32, 48]) #8 self.filter_num2 = np.array([8, 12, 16, 24, 32, 48, 64, 80]) #8 self.filter_num3 = np.array([16, 24, 32, 48, 64, 80, 96, 128]) #8 self.filter_num4 = np.array( [24, 32, 48, 64, 80, 96, 128, 144, 160, 192]) #10 self.filter_num5 = np.array( [32, 48, 64, 80, 96, 128, 144, 160, 192, 224]) #10 self.filter_num6 = np.array( [64, 80, 96, 128, 144, 160, 192, 224, 256, 320, 384, 512]) #12 self.k_size = np.array([3, 5]) #2 self.multiply = np.array([1, 2, 3, 4, 6]) #5 self.repeat = np.array([1, 2, 3, 4, 5, 6]) #6 self.scale = scale self.class_dim = class_dim def init_tokens(self): """ The initial token send to controller. The first one is the index of the first layers' channel in self.head_num, each line in the following represent the index of the [expansion_factor, filter_num, repeat_num, kernel_size] """ # original MobileNetV2 return [ 4, # 1, 16, 1 4, 5, 1, 0, # 6, 24, 1 4, 5, 1, 0, # 6, 24, 2 4, 4, 2, 0, # 6, 32, 3 4, 4, 3, 0, # 6, 64, 4 4, 5, 2, 0, # 6, 96, 3 4, 7, 2, 0, # 6, 160, 3 4, 9, 0, 0 ] # 6, 320, 1 def range_table(self): """ get range table of current search space """ # head_num + 7 * [multiple(expansion_factor), filter_num, repeat, kernel_size] return [ 7, 5, 8, 6, 2, 5, 8, 6, 2, 5, 8, 6, 2, 5, 8, 6, 2, 5, 10, 6, 2, 5, 10, 6, 2, 5, 12, 6, 2 ] def token2arch(self, tokens=None): """ return net_arch function """ if tokens is None: tokens = self.init_tokens() base_bottleneck_params_list = [ (1, self.head_num[tokens[0]], 1, 1, 3), (self.multiply[tokens[1]], self.filter_num1[tokens[2]], self.repeat[tokens[3]], 2, self.k_size[tokens[4]]), (self.multiply[tokens[5]], self.filter_num1[tokens[6]], self.repeat[tokens[7]], 2, self.k_size[tokens[8]]), (self.multiply[tokens[9]], self.filter_num2[tokens[10]], self.repeat[tokens[11]], 2, self.k_size[tokens[12]]), (self.multiply[tokens[13]], self.filter_num3[tokens[14]], self.repeat[tokens[15]], 2, self.k_size[tokens[16]]), (self.multiply[tokens[17]], self.filter_num3[tokens[18]], self.repeat[tokens[19]], 1, self.k_size[tokens[20]]), (self.multiply[tokens[21]], self.filter_num5[tokens[22]], self.repeat[tokens[23]], 2, self.k_size[tokens[24]]), (self.multiply[tokens[25]], self.filter_num6[tokens[26]], self.repeat[tokens[27]], 1, self.k_size[tokens[28]]), ] assert self.block_num < 7, 'block number must less than 7, but receive block number is {}'.format( self.block_num) # the stride = 2 means downsample feature map in the convolution, so only when stride=2, block_num minus 1, # otherwise, add layers to params_list directly. bottleneck_params_list = [] for param_list in base_bottleneck_params_list: if param_list[3] == 1: bottleneck_params_list.append(param_list) else: if self.block_num > 1: bottleneck_params_list.append(param_list) self.block_num -= 1 else: break def net_arch(input): #conv1 # all padding is 'SAME' in the conv2d, can compute the actual padding automatic. input = conv_bn_layer( input, num_filters=int(32 * self.scale), filter_size=3, stride=2, padding='SAME', act='relu6', name='conv1_1') # bottleneck sequences i = 1 in_c = int(32 * self.scale) for layer_setting in bottleneck_params_list: t, c, n, s, k = layer_setting i += 1 input = self.invresi_blocks( input=input, in_c=in_c, t=t, c=int(c * self.scale), n=n, s=s, k=k, name='conv' + str(i)) in_c = int(c * self.scale) # if output_size is 1, add fc layer in the end if self.output_size == 1: input = fluid.layers.fc( input=input, size=self.class_dim, param_attr=ParamAttr(name='fc10_weights'), bias_attr=ParamAttr(name='fc10_offset')) else: assert self.output_size == input.shape[2], \ ("output_size must EQUAL to input_size / (2^block_num)." "But receive input_size={}, output_size={}, block_num={}".format( self.input_size, self.output_size, self.block_num)) return input return net_arch def shortcut(self, input, data_residual): """Build shortcut layer. Args: input(Variable): input. data_residual(Variable): residual layer. Returns: Variable, layer output. """ return fluid.layers.elementwise_add(input, data_residual) def inverted_residual_unit(self, input, num_in_filter, num_filters, ifshortcut, stride, filter_size, expansion_factor, reduction_ratio=4, name=None): """Build inverted residual unit. Args: input(Variable), input. num_in_filter(int), number of in filters. num_filters(int), number of filters. ifshortcut(bool), whether using shortcut. stride(int), stride. filter_size(int), filter size. padding(str|int|list), padding. expansion_factor(float), expansion factor. name(str), name. Returns: Variable, layers output. """ num_expfilter = int(round(num_in_filter * expansion_factor)) channel_expand = conv_bn_layer( input=input, num_filters=num_expfilter, filter_size=1, stride=1, padding='SAME', num_groups=1, act='relu6', name=name + '_expand') bottleneck_conv = conv_bn_layer( input=channel_expand, num_filters=num_expfilter, filter_size=filter_size, stride=stride, padding='SAME', num_groups=num_expfilter, act='relu6', name=name + '_dwise', use_cudnn=False) linear_out = conv_bn_layer( input=bottleneck_conv, num_filters=num_filters, filter_size=1, stride=1, padding='SAME', num_groups=1, act=None, name=name + '_linear') out = linear_out if ifshortcut: out = self.shortcut(input=input, data_residual=out) return out def invresi_blocks(self, input, in_c, t, c, n, s, k, name=None): """Build inverted residual blocks. Args: input: Variable, input. in_c: int, number of in filters. t: float, expansion factor. c: int, number of filters. n: int, number of layers. s: int, stride. k: int, filter size. name: str, name. Returns: Variable, layers output. """ first_block = self.inverted_residual_unit( input=input, num_in_filter=in_c, num_filters=c, ifshortcut=False, stride=s, filter_size=k, expansion_factor=t, name=name + '_1') last_residual_block = first_block last_c = c for i in range(1, n): last_residual_block = self.inverted_residual_unit( input=last_residual_block, num_in_filter=last_c, num_filters=c, ifshortcut=True, stride=1, filter_size=k, expansion_factor=t, name=name + '_' + str(i + 1)) return last_residual_block