# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys sys.path.append("../") import unittest import numpy import paddle from static_case import StaticCase from paddleslim.prune import sensitivity, merge_sensitive, load_sensitivities, get_ratios_by_loss from layers import conv_bn_layer class TestSensitivity(StaticCase): def test_sensitivity(self): main_program = paddle.static.Program() startup_program = paddle.static.Program() with paddle.static.program_guard(main_program, startup_program): input = paddle.static.data(name="image", shape=[None, 1, 28, 28]) label = paddle.static.data( name="label", shape=[None, 1], dtype="int64") conv1 = conv_bn_layer(input, 8, 3, "conv1") conv2 = conv_bn_layer(conv1, 8, 3, "conv2") sum1 = conv1 + conv2 conv3 = conv_bn_layer(sum1, 8, 3, "conv3") conv4 = conv_bn_layer(conv3, 8, 3, "conv4") sum2 = conv4 + sum1 conv5 = conv_bn_layer(sum2, 8, 3, "conv5") conv6 = conv_bn_layer(conv5, 8, 3, "conv6") out = paddle.static.nn.fc(conv6, 10, activation='softmax') acc_top1 = paddle.static.accuracy(input=out, label=label, k=1) eval_program = main_program.clone(for_test=True) place = paddle.CUDAPlace(0) exe = paddle.static.Executor(place) exe.run(startup_program) val_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size=128) def eval_func(program): feeder = paddle.fluid.DataFeeder( feed_list=['image', 'label'], place=place, program=program) acc_set = [] for data in val_reader(): acc_np = exe.run(program=program, feed=feeder.feed(data), fetch_list=[acc_top1]) acc_set.append(float(acc_np[0])) acc_val_mean = numpy.array(acc_set).mean() print("acc_val_mean: {}".format(acc_val_mean)) return acc_val_mean def eval_func_for_args(args): program = args[0] feeder = paddle.fluid.DataFeeder( feed_list=['image', 'label'], place=place, program=program) acc_set = [] for data in val_reader(): acc_np = exe.run(program=program, feed=feeder.feed(data), fetch_list=[acc_top1]) acc_set.append(float(acc_np[0])) acc_val_mean = numpy.array(acc_set).mean() print("acc_val_mean: {}".format(acc_val_mean)) return acc_val_mean sensitivity( eval_program, place, ["conv4_weights"], eval_func, sensitivities_file="./sensitivities_file_0", pruned_ratios=[0.1, 0.2]) sensitivity( eval_program, place, ["conv4_weights"], eval_func, sensitivities_file="./sensitivities_file_1", pruned_ratios=[0.3, 0.4]) params_sens = sensitivity( eval_program, place, ["conv4_weights"], eval_func_for_args, eval_args=[eval_program], sensitivities_file="./sensitivites_file_params", pruned_ratios=[0.1, 0.2, 0.3, 0.4]) sens_0 = load_sensitivities('./sensitivities_file_0') sens_1 = load_sensitivities('./sensitivities_file_1') sens = merge_sensitive([sens_0, sens_1]) origin_sens = sensitivity( eval_program, place, ["conv4_weights"], eval_func, sensitivities_file="./sensitivities_file_2", pruned_ratios=[0.1, 0.2, 0.3, 0.4]) self.assertTrue(params_sens == origin_sens) self.assertTrue(sens == origin_sens) loss = 0.0 ratios = get_ratios_by_loss(sens, loss) self.assertTrue(len(ratios) == len(sens)) loss = min(list(sens.get('conv4_weights').values())) - 0.01 ratios = get_ratios_by_loss(sens, loss) self.assertTrue(len(ratios) == len(sens)) if __name__ == '__main__': unittest.main()