import sys import os sys.path.append("../") import unittest import tempfile import paddle import unittest import numpy as np from static_case import StaticCase from paddle.io import Dataset from paddleslim.auto_compression import AutoCompression from paddleslim.auto_compression.config_helpers import load_config class RandomEvalDataset(Dataset): def __init__(self, num_samples, image_shape=[3, 32, 32], class_num=10): self.num_samples = num_samples self.image_shape = image_shape self.class_num = class_num def __getitem__(self, idx): image = np.random.random(self.image_shape).astype('float32') return image def __len__(self): return self.num_samples class ACTBase(unittest.TestCase): def __init__(self, *args, **kwargs): super(ACTBase, self).__init__(*args, **kwargs) paddle.enable_static() self.tmpdir = tempfile.TemporaryDirectory(prefix="test_") self.infer_model_dir = os.path.join(self.tmpdir.name, "infer") self.create_program() self.create_dataloader() def create_program(self): main_program = paddle.static.Program() startup_program = paddle.static.Program() with paddle.static.program_guard(main_program, startup_program): data = paddle.static.data( name='data', shape=[-1, 3, 32, 32], dtype='float32') tmp = paddle.static.nn.conv2d( input=data, num_filters=2, filter_size=3) out = paddle.static.nn.conv2d( input=tmp, num_filters=2, filter_size=3) exe = paddle.static.Executor(paddle.CPUPlace()) exe.run(startup_program) paddle.static.save_inference_model( self.infer_model_dir, [data], [out], exe, program=main_program) print(f"saved infer model to [{self.infer_model_dir}]") def create_dataloader(self): # define a random dataset self.eval_dataset = RandomEvalDataset(32) def __del__(self): self.tmpdir.cleanup() class TestYamlQATDistTrain(ACTBase): def __init__(self, *args, **kwargs): super(TestYamlQATDistTrain, self).__init__(*args, **kwargs) def test_compress(self): image = paddle.static.data( name='data', shape=[-1, 3, 32, 32], dtype='float32') train_loader = paddle.io.DataLoader( self.eval_dataset, feed_list=[image], batch_size=4) ac = AutoCompression( model_dir=self.tmpdir.name, model_filename="infer.pdmodel", params_filename="infer.pdiparams", save_dir="output", config="./qat_dist_train.yaml", train_dataloader=train_loader, eval_dataloader=train_loader) # eval_function to verify accuracy ac.compress() class TestSetQATDist(ACTBase): def __init__(self, *args, **kwargs): super(TestSetQATDist, self).__init__(*args, **kwargs) def test_compress(self): image = paddle.static.data( name='data', shape=[-1, 3, 32, 32], dtype='float32') train_loader = paddle.io.DataLoader( self.eval_dataset, feed_list=[image], batch_size=4) ac = AutoCompression( model_dir=self.tmpdir.name, model_filename="infer.pdmodel", params_filename="infer.pdiparams", save_dir="output", config={"QAT", "Distillation"}, train_dataloader=train_loader, eval_dataloader=train_loader) # eval_function to verify accuracy ac.compress() class TestDictQATDist(ACTBase): def __init__(self, *args, **kwargs): super(TestDictQATDist, self).__init__(*args, **kwargs) def test_compress(self): config = load_config("./qat_dist_train.yaml") image = paddle.static.data( name='data', shape=[-1, 3, 32, 32], dtype='float32') train_loader = paddle.io.DataLoader( self.eval_dataset, feed_list=[image], batch_size=4) ac = AutoCompression( model_dir=self.tmpdir.name, model_filename="infer.pdmodel", params_filename="infer.pdiparams", save_dir="output", config=config, train_dataloader=train_loader, eval_dataloader=train_loader) # eval_function to verify accuracy ac.compress() if __name__ == '__main__': unittest.main()