# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The controller used to search hyperparameters or neural architecture""" import copy import math import logging import numpy as np from .controller import EvolutionaryController from log_helper import get_logger __all__ = ["SAController"] _logger = get_logger(__name__, level=logging.INFO) class SAController(EvolutionaryController): """Simulated annealing controller.""" def __init__(self, range_table=None, reduce_rate=0.85, init_temperature=1024, max_try_times=None, init_tokens=None, constrain_func=None): """Initialize. Args: range_table(list): Range table. reduce_rate(float): The decay rate of temperature. init_temperature(float): Init temperature. max_try_times(int): max try times before get legal tokens. init_tokens(list): The initial tokens. constrain_func(function): The callback function used to check whether the tokens meet constraint. None means there is no constraint. Default: None. """ super(SAController, self).__init__() self._range_table = range_table assert isinstance(self._range_table, tuple) and ( len(self._range_table) == 2) self._reduce_rate = reduce_rate self._init_temperature = init_temperature self._max_try_times = max_try_times self._reward = -1 self._tokens = init_tokens self._constrain_func = constrain_func self._max_reward = -1 self._best_tokens = None self._iter = 0 def __getstate__(self): d = {} for key in self.__dict__: if key != "_constrain_func": d[key] = self.__dict__[key] return d def update(self, tokens, reward, iter): """ Update the controller according to latest tokens and reward. Args: tokens(list): The tokens generated in last step. reward(float): The reward of tokens. """ iter = int(iter) if iter > self._iter: self._iter = iter temperature = self._init_temperature * self._reduce_rate**self._iter if (reward > self._reward) or (np.random.random() <= math.exp( (reward - self._reward) / temperature)): self._reward = reward self._tokens = tokens if reward > self._max_reward: self._max_reward = reward self._best_tokens = tokens _logger.info( "Controller - iter: {}; current_reward: {}; current tokens: {}". format(self._iter, self._reward, self._tokens)) def next_tokens(self, control_token=None): """ Get next tokens. """ if control_token: tokens = control_token[:] else: tokens = self._tokens new_tokens = tokens[:] index = int(len(self._range_table[0]) * np.random.random()) new_tokens[index] = np.random.randint(self._range_table[0][index], self._range_table[1][index]) _logger.debug("change index[{}] from {} to {}".format(index, tokens[ index], new_tokens[index])) if self._constrain_func is None or self._max_try_times is None: return new_tokens for _ in range(self._max_try_times): if not self._constrain_func(new_tokens): index = int(len(self._range_table[0]) * np.random.random()) new_tokens = tokens[:] new_tokens[index] = np.random.randint( self._range_table[0][index], self._range_table[1][index]) else: break return new_tokens