# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import argparse import functools from functools import partial import numpy as np import paddle import paddle.nn as nn from paddle.io import DataLoader from imagenet_reader import ImageNetDataset from paddleslim.auto_compression.config_helpers import load_config as load_slim_config def argsparser(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--config_path', type=str, default='./image_classification/configs/eval.yaml', help="path of compression strategy config.") parser.add_argument( '--model_dir', type=str, default='./MobileNetV1_infer', help='model directory') return parser def eval_reader(data_dir, batch_size, crop_size, resize_size): val_reader = ImageNetDataset( mode='val', data_dir=data_dir, crop_size=crop_size, resize_size=resize_size) val_loader = DataLoader( val_reader, batch_size=global_config['batch_size'], shuffle=False, drop_last=False, num_workers=0) return val_loader def eval(): devices = paddle.device.get_device().split(':')[0] places = paddle.device._convert_to_place(devices) exe = paddle.static.Executor(places) val_program, feed_target_names, fetch_targets = paddle.static.load_inference_model( global_config["model_dir"], exe, model_filename=global_config["model_filename"], params_filename=global_config["params_filename"]) print('Loaded model from: {}'.format(global_config["model_dir"])) val_loader = eval_reader( data_dir, batch_size=global_config['batch_size'], crop_size=img_size, resize_size=resize_size) results = [] print('Evaluating...') for batch_id, (image, label) in enumerate(val_loader): image = np.array(image) label = np.array(label).astype('int64') pred = exe.run(val_program, feed={feed_target_names[0]: image}, fetch_list=fetch_targets) pred = np.array(pred[0]) label = np.array(label) sort_array = pred.argsort(axis=1) top_1_pred = sort_array[:, -1:][:, ::-1] top_1 = np.mean(label == top_1_pred) top_5_pred = sort_array[:, -5:][:, ::-1] acc_num = 0 for i in range(len(label)): if label[i][0] in top_5_pred[i]: acc_num += 1 top_5 = float(acc_num) / len(label) results.append([top_1, top_5]) result = np.mean(np.array(results), axis=0) return result[0] def main(args): global global_config global_config = load_slim_config(args.config_path) global data_dir data_dir = global_config['data_dir'] if args.model_dir != global_config['model_dir']: global_config['model_dir'] = args.model_dir global img_size, resize_size img_size = int(global_config[ 'img_size']) if 'img_size' in global_config else 224 resize_size = int(global_config[ 'resize_size']) if 'resize_size' in global_config else 256 result = eval() print('Eval Top1:', result) if __name__ == '__main__': paddle.enable_static() parser = argsparser() args = parser.parse_args() main(args)