# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import numpy as np import argparse import paddle from ppdet.core.workspace import load_config, merge_config from ppdet.core.workspace import create from ppdet.metrics import COCOMetric from paddleslim.auto_compression.config_helpers import load_config as load_slim_config from paddleslim.auto_compression import AutoCompression def argsparser(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--config_path', type=str, default=None, help="path of compression strategy config.", required=True) parser.add_argument( '--save_dir', type=str, default='output', help="directory to save compressed model.") parser.add_argument( '--devices', type=str, default='gpu', help="which device used to compress.") parser.add_argument( '--eval', type=bool, default=False, help="whether to run evaluation.") return parser def print_arguments(args): print('----------- Running Arguments -----------') for arg, value in sorted(vars(args).items()): print('%s: %s' % (arg, value)) print('------------------------------------------') def reader_wrapper(reader, input_list): def gen(): for data in reader: in_dict = {} for input_name in input_list: in_dict[input_name] = data[input_name] yield in_dict return gen def eval(compress_config): place = paddle.CUDAPlace(0) if FLAGS.devices == 'gpu' else paddle.CPUPlace() exe = paddle.static.Executor(place) val_program, feed_target_names, fetch_targets = paddle.fluid.io.load_inference_model( compress_config["model_dir"], exe, model_filename=compress_config["model_filename"], params_filename=compress_config["params_filename"], ) clsid2catid = {v: k for k, v in dataset.catid2clsid.items()} anno_file = dataset.get_anno() metric = COCOMetric( anno_file=anno_file, clsid2catid=clsid2catid, bias=0, IouType='bbox') for batch_id, data in enumerate(val_loader): data_all = {k: np.array(v) for k, v in data.items()} data_input = {} for k, v in data.items(): if k in compress_config['input_list']: data_input[k] = np.array(v) outs = exe.run(val_program, feed=data_input, fetch_list=fetch_targets, return_numpy=False) res = {} for out in outs: v = np.array(out) if len(v.shape) > 1: res['bbox'] = v else: res['bbox_num'] = v metric.update(data_all, res) if batch_id % 100 == 0: print('Eval iter:', batch_id) metric.accumulate() metric.log() metric.reset() def eval_function(exe, compiled_test_program, test_feed_names, test_fetch_list): clsid2catid = {v: k for k, v in dataset.catid2clsid.items()} anno_file = dataset.get_anno() metric = COCOMetric( anno_file=anno_file, clsid2catid=clsid2catid, bias=1, IouType='bbox') for batch_id, data in enumerate(val_loader): data_all = {k: np.array(v) for k, v in data.items()} data_input = {} for k, v in data.items(): if k in test_feed_names: data_input[k] = np.array(v) outs = exe.run(compiled_test_program, feed=data_input, fetch_list=test_fetch_list, return_numpy=False) res = {} for out in outs: v = np.array(out) if len(v.shape) > 1: res['bbox'] = v else: res['bbox_num'] = v metric.update(data_all, res) if batch_id % 100 == 0: print('Eval iter:', batch_id) metric.accumulate() metric.log() map_res = metric.get_results() metric.reset() return map_res['bbox'][0] def main(): compress_config, train_config = load_slim_config(FLAGS.config_path) reader_cfg = load_config(compress_config['reader_config']) train_loader = create('EvalReader')(reader_cfg['TrainDataset'], reader_cfg['worker_num'], return_list=True) train_loader = reader_wrapper(train_loader, compress_config['input_list']) global dataset dataset = reader_cfg['EvalDataset'] global val_loader val_loader = create('EvalReader')(reader_cfg['EvalDataset'], reader_cfg['worker_num'], return_list=True) if FLAGS.eval: eval(compress_config) sys.exit(0) if 'Evaluation' in compress_config.keys() and compress_config['Evaluation']: eval_func = eval_function else: eval_func = None ac = AutoCompression( model_dir=compress_config["model_dir"], model_filename=compress_config["model_filename"], params_filename=compress_config["params_filename"], save_dir=FLAGS.save_dir, strategy_config=compress_config, train_config=train_config, train_dataloader=train_loader, eval_callback=eval_func) ac.compress() if __name__ == '__main__': paddle.enable_static() parser = argsparser() FLAGS = parser.parse_args() print_arguments(FLAGS) assert FLAGS.devices in ['cpu', 'gpu', 'xpu', 'npu'] paddle.set_device(FLAGS.devices) main()