提交 fdc3fdeb 编写于 作者: B baiyfbupt

Deployed 482d368d with MkDocs version: 1.0.4

上级 21ec6fa5
......@@ -48,6 +48,11 @@
<li class="toctree-l1">
<a class="" href="/model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<span class="caption-text">API</span>
<ul class="subnav">
<li class="">
......@@ -113,21 +118,6 @@
<a class="" href="/algo/algo/">算法原理</a>
</li>
<li class="toctree-l1">
<a class="" href="/model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<a class="" href="/model_zoo2/">模型库2</a>
</li>
<li class="toctree-l1">
<a class="" href="/model_zoo3/">模型库3</a>
</li>
</ul>
</div>
&nbsp;
......
......@@ -55,6 +55,11 @@
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<span class="caption-text">API</span>
<ul class="subnav">
<li class="">
......@@ -169,21 +174,6 @@
</ul>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo2/">模型库2</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo3/">模型库3</a>
</li>
</ul>
</div>
&nbsp;
......@@ -491,8 +481,6 @@ e^{\frac{(r_k-r)}{T_k}} & r_k < r\\
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../../model_zoo/" class="btn btn-neutral float-right" title="模型库">Next <span class="icon icon-circle-arrow-right"></span></a>
<a href="../../tutorials/distillation_demo/" class="btn btn-neutral" title="知识蒸馏"><span class="icon icon-circle-arrow-left"></span> Previous</a>
......@@ -525,8 +513,6 @@ e^{\frac{(r_k-r)}{T_k}} & r_k < r\\
<span><a href="../../tutorials/distillation_demo/" style="color: #fcfcfc;">&laquo; Previous</a></span>
<span style="margin-left: 15px"><a href="../../model_zoo/" style="color: #fcfcfc">Next &raquo;</a></span>
</span>
</div>
<script>var base_url = '../..';</script>
......
......@@ -55,6 +55,11 @@
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<span class="caption-text">API</span>
<ul class="subnav">
<li class="">
......@@ -132,21 +137,6 @@
<a class="" href="../../algo/algo/">算法原理</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo2/">模型库2</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo3/">模型库3</a>
</li>
</ul>
</div>
&nbsp;
......
......@@ -55,6 +55,11 @@
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<span class="caption-text">API</span>
<ul class="subnav">
<li class="">
......@@ -120,21 +125,6 @@
<a class="" href="../../algo/algo/">算法原理</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo2/">模型库2</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo3/">模型库3</a>
</li>
</ul>
</div>
&nbsp;
......
......@@ -55,6 +55,11 @@
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<span class="caption-text">API</span>
<ul class="subnav">
<li class="">
......@@ -134,21 +139,6 @@
<a class="" href="../../algo/algo/">算法原理</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo2/">模型库2</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo3/">模型库3</a>
</li>
</ul>
</div>
&nbsp;
......
......@@ -55,6 +55,11 @@
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<span class="caption-text">API</span>
<ul class="subnav">
<li class="">
......@@ -138,21 +143,6 @@
<a class="" href="../../algo/algo/">算法原理</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo2/">模型库2</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo3/">模型库3</a>
</li>
</ul>
</div>
&nbsp;
......
......@@ -55,6 +55,11 @@
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<span class="caption-text">API</span>
<ul class="subnav">
<li class=" current">
......@@ -138,21 +143,6 @@
<a class="" href="../../algo/algo/">算法原理</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo2/">模型库2</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo3/">模型库3</a>
</li>
</ul>
</div>
&nbsp;
......@@ -520,7 +510,7 @@
<a href="../prune_api/" class="btn btn-neutral float-right" title="剪枝与敏感度">Next <span class="icon icon-circle-arrow-right"></span></a>
<a href="../.." class="btn btn-neutral" title="Home"><span class="icon icon-circle-arrow-left"></span> Previous</a>
<a href="../../model_zoo/" class="btn btn-neutral" title="模型库"><span class="icon icon-circle-arrow-left"></span> Previous</a>
</div>
......@@ -548,7 +538,7 @@
<a href="https://github.com/PaddlePaddle/PaddleSlim/" class="fa fa-github" style="float: left; color: #fcfcfc"> GitHub</a>
<span><a href="../.." style="color: #fcfcfc;">&laquo; Previous</a></span>
<span><a href="../../model_zoo/" style="color: #fcfcfc;">&laquo; Previous</a></span>
<span style="margin-left: 15px"><a href="../prune_api/" style="color: #fcfcfc">Next &raquo;</a></span>
......
......@@ -55,6 +55,11 @@
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<span class="caption-text">API</span>
<ul class="subnav">
<li class="">
......@@ -137,21 +142,6 @@
<a class="" href="../../algo/algo/">算法原理</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo2/">模型库2</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo3/">模型库3</a>
</li>
</ul>
</div>
&nbsp;
......
......@@ -55,6 +55,11 @@
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<span class="caption-text">API</span>
<ul class="subnav">
<li class="">
......@@ -138,21 +143,6 @@
<a class="" href="../../algo/algo/">算法原理</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo2/">模型库2</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo3/">模型库3</a>
</li>
</ul>
</div>
&nbsp;
......
......@@ -73,6 +73,11 @@
<li class="toctree-l1">
<a class="" href="model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<span class="caption-text">API</span>
<ul class="subnav">
<li class="">
......@@ -138,21 +143,6 @@
<a class="" href="algo/algo/">算法原理</a>
</li>
<li class="toctree-l1">
<a class="" href="model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<a class="" href="model_zoo2/">模型库2</a>
</li>
<li class="toctree-l1">
<a class="" href="model_zoo3/">模型库3</a>
</li>
</ul>
</div>
&nbsp;
......@@ -258,7 +248,7 @@
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="api/quantization_api/" class="btn btn-neutral float-right" title="量化">Next <span class="icon icon-circle-arrow-right"></span></a>
<a href="model_zoo/" class="btn btn-neutral float-right" title="模型库">Next <span class="icon icon-circle-arrow-right"></span></a>
</div>
......@@ -288,7 +278,7 @@
<span style="margin-left: 15px"><a href="api/quantization_api/" style="color: #fcfcfc">Next &raquo;</a></span>
<span style="margin-left: 15px"><a href="model_zoo/" style="color: #fcfcfc">Next &raquo;</a></span>
</span>
</div>
......@@ -303,5 +293,5 @@
<!--
MkDocs version : 1.0.4
Build Date UTC : 2020-01-03 10:14:15
Build Date UTC : 2020-01-07 07:51:02
-->
......@@ -53,6 +53,51 @@
<a class="" href="..">Home</a>
</li>
<li class="toctree-l1 current">
<a class="current" href="./">模型库</a>
<ul class="subnav">
<li class="toctree-l2"><a href="#1">1. 图象分类</a></li>
<ul>
<li><a class="toctree-l3" href="#11">1.1 量化</a></li>
<li><a class="toctree-l3" href="#12">1.2 剪枝</a></li>
<li><a class="toctree-l3" href="#13">1.3 蒸馏</a></li>
</ul>
<li class="toctree-l2"><a href="#2">2. 目标检测</a></li>
<ul>
<li><a class="toctree-l3" href="#21">2.1 量化</a></li>
<li><a class="toctree-l3" href="#22">2.2 剪枝</a></li>
<li><a class="toctree-l3" href="#23">2.3 蒸馏</a></li>
</ul>
<li class="toctree-l2"><a href="#3">3. 图像分割</a></li>
<ul>
<li><a class="toctree-l3" href="#31">3.1 量化</a></li>
<li><a class="toctree-l3" href="#32">3.2 剪枝</a></li>
</ul>
</ul>
</li>
<li class="toctree-l1">
<span class="caption-text">API</span>
......@@ -120,61 +165,6 @@
<a class="" href="../algo/algo/">算法原理</a>
</li>
<li class="toctree-l1 current">
<a class="current" href="./">模型库</a>
<ul class="subnav">
<li class="toctree-l2"><a href="#1">1. 量化</a></li>
<ul>
<li><a class="toctree-l3" href="#11">1.1 图象分类</a></li>
<li><a class="toctree-l3" href="#12">1.2 目标检测</a></li>
<li><a class="toctree-l3" href="#13">1.3 图像分割</a></li>
</ul>
<li class="toctree-l2"><a href="#2">2. 剪枝</a></li>
<ul>
<li><a class="toctree-l3" href="#21">2.1 图像分类</a></li>
<li><a class="toctree-l3" href="#22">2.2 目标检测</a></li>
<li><a class="toctree-l3" href="#23">2.3 图像分割</a></li>
</ul>
<li class="toctree-l2"><a href="#3">3. 蒸馏</a></li>
<ul>
<li><a class="toctree-l3" href="#31">3.1 图象分类</a></li>
<li><a class="toctree-l3" href="#32">3.2 目标检测</a></li>
</ul>
</ul>
</li>
<li class="toctree-l1">
<a class="" href="../model_zoo2/">模型库2</a>
</li>
<li class="toctree-l1">
<a class="" href="../model_zoo3/">模型库3</a>
</li>
</ul>
</div>
&nbsp;
......@@ -210,637 +200,792 @@
<div role="main">
<div class="section">
<h2 id="1">1. 量化<a class="headerlink" href="#1" title="Permanent link">#</a></h2>
<h3 id="11">1.1 图象分类<a class="headerlink" href="#11" title="Permanent link">#</a></h3>
<h2 id="1">1. 图象分类<a class="headerlink" href="#1" title="Permanent link">#</a></h2>
<p>数据集:ImageNet1000类</p>
<p>评价指标:Top-1/Top-5准确率</p>
<h3 id="11">1.1 量化<a class="headerlink" href="#11" title="Permanent link">#</a></h3>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">FP32</th>
<th align="center">离线量化</th>
<th align="center">量化训练</th>
<th align="center">模型</th>
<th align="center">压缩方法</th>
<th align="center">Top-1/Top-5 Acc</th>
<th align="center">模型大小(MB)</th>
<th align="center">下载</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">MobileNetV1 FP32</td>
<td align="center"><a href="http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar">70.99%/89.68%</a></td>
<td align="center"><a href="">xx%/xx%</a></td>
<td align="center"><a href="">xx%/xx%</a></td>
<td align="center">MobileNetV1</td>
<td align="center">-</td>
<td align="center">70.99%/89.68%</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNetV2 FP32</td>
<td align="center"><a href="https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar">72.15%/90.65%</a></td>
<td align="center"></td>
<td align="center"></td>
<td align="center">MobileNetV1</td>
<td align="center">quant_post</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">ResNet50 FP32</td>
<td align="center"><a href="http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar">76.50%/93.00%</a></td>
<td align="center"></td>
<td align="center"></td>
<td align="center">MobileNetV1</td>
<td align="center">quant_aware</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</tbody>
</table>
<p>量化前后,模型大小的变化对比如下:</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">FP32</th>
<th align="center">离线量化</th>
<th align="center">量化训练</th>
<td align="center">MobileNetV2</td>
<td align="center">-</td>
<td align="center">72.15%/90.65%</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</thead>
<tbody>
<tr>
<td align="center">MobileNetV1</td>
<td align="center">17M</td>
<td align="center">xxM</td>
<td align="center">xxM</td>
<td align="center">MobileNetV2</td>
<td align="center">quant_post</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNetV2</td>
<td align="center">xxM</td>
<td align="center"></td>
<td align="center"></td>
<td align="center">quant_aware</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">ResNet50</td>
<td align="center">-</td>
<td align="center">76.50%/93.00%</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">ResNet50</td>
<td align="center">99M</td>
<td align="center"></td>
<td align="center"></td>
<td align="center">quant_post</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">ResNet50</td>
<td align="center">quant_aware</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</tbody>
</table>
<h3 id="12">1.2 目标检测<a class="headerlink" href="#12" title="Permanent link">#</a></h3>
<p>数据集:COCO 2017 </p>
<h3 id="12">1.2 剪枝<a class="headerlink" href="#12" title="Permanent link">#</a></h3>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">输入尺寸</th>
<th align="center">Image/GPU</th>
<th align="center">FP32 BoxAP</th>
<th align="center">离线量化 BoxAP</th>
<th align="center">量化训练 BoxAP</th>
<th align="center">模型</th>
<th align="center">压缩方法</th>
<th align="center">Top-1/Top-5 Acc</th>
<th align="center">模型大小(MB)</th>
<th align="center">FLOPs(M)</th>
<th align="center">arm时延(ms)</th>
<th align="center">P4时延(ms)</th>
<th align="center">下载</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">608</td>
<td align="center">8</td>
<td align="center"><a href="https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar">29.3</a></td>
<td align="center"><a href="">xx</a></td>
<td align="center"><a href="">xx</a></td>
<td align="center">MobileNetV1</td>
<td align="center">-</td>
<td align="center">70.99%/89.68%</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">416</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center">MobileNetV1</td>
<td align="center">uniform -xx%</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">320</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center">MobileNetV1</td>
<td align="center">sensitive -xx%</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">R50-dcn-YOLOv3</td>
<td align="center">608</td>
<td align="center"></td>
<td align="center"><a href="https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar">41.4</a></td>
<td align="center"></td>
<td align="center"></td>
<td align="center">MobileNetV2</td>
<td align="center">-</td>
<td align="center">72.15%/90.65%</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">R50-dcn-YOLOv3</td>
<td align="center">416</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center">MobileNetV2</td>
<td align="center">uniform -xx%</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">R50-dcn-YOLOv3</td>
<td align="center">320</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center">MobileNetV2</td>
<td align="center">sensitive -xx%</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</tbody>
</table>
<p>量化前后,模型大小的变化对比如下:</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">FP32</th>
<th align="center">离线量化</th>
<th align="center">量化训练</th>
<td align="center">ResNet34</td>
<td align="center">-</td>
<td align="center">74.57%/92.14%</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</thead>
<tbody>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">xxM</td>
<td align="center">xxM</td>
<td align="center">xxM</td>
<td align="center">ResNet34</td>
<td align="center">uniform -xx%</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">R50-dcn-YOLOv3</td>
<td align="center">xxM</td>
<td align="center"></td>
<td align="center"></td>
<td align="center">ResNet34</td>
<td align="center">auto -xx%</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</tbody>
</table>
<h3 id="_1"><a class="headerlink" href="#_1" title="Permanent link">#</a></h3>
<p>数据集:WIDER-FACE</p>
<p>评价指标:Easy/Medium/Hard mAP</p>
<h3 id="13">1.3 蒸馏<a class="headerlink" href="#13" title="Permanent link">#</a></h3>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">输入尺寸</th>
<th align="center">Image/GPU</th>
<th align="center">FP32</th>
<th align="center">离线量化</th>
<th align="center">量化训练</th>
<th align="center">模型</th>
<th align="center">压缩方法</th>
<th align="center">Top-1/Top-5 Acc</th>
<th align="center">模型大小(MB)</th>
<th align="center">下载</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">BlazeFace</td>
<td align="center">640</td>
<td align="center">8</td>
<td align="center"><a href="https://paddlemodels.bj.bcebos.com/object_detection/blazeface_original.tar">0.915/0.892/0.797</a></td>
<td align="center"><a href="">xx/xx/xx</a></td>
<td align="center"><a href="">xx/xx/xx</a></td>
<td align="center">MobileNetV1</td>
<td align="center">-</td>
<td align="center">70.99%/89.68%</td>
<td align="center">17</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">BlazeFace-Lite</td>
<td align="center">640</td>
<td align="center"></td>
<td align="center"><a href="https://paddlemodels.bj.bcebos.com/object_detection/blazeface_lite.tar">0.909/0.885/0.781</a></td>
<td align="center"></td>
<td align="center"></td>
<td align="center">ResNet50_vd</td>
<td align="center">-</td>
<td align="center">79.12%/94.44%</td>
<td align="center">99</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">BlazeFace-NAS</td>
<td align="center">640</td>
<td align="center"></td>
<td align="center"><a href="https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas.tar">0.837/0.807/0.658</a></td>
<td align="center"></td>
<td align="center"></td>
<td align="center">MobileNetV1</td>
<td align="center">ResNet50_vd<sup><a href="#trans1">1</a></sup> distill</td>
<td align="center">72.77%/90.68%</td>
<td align="center">17</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</tbody>
</table>
<p>量化前后,模型大小的变化对比如下:</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">FP32</th>
<th align="center">离线量化</th>
<th align="center">量化训练</th>
<td align="center">MobileNetV2</td>
<td align="center">-</td>
<td align="center">72.15%/90.65%</td>
<td align="center">15</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</thead>
<tbody>
<tr>
<td align="center">BlazeFace</td>
<td align="center">xxM</td>
<td align="center">xxM</td>
<td align="center">xxM</td>
<td align="center">MobileNetV2</td>
<td align="center">ResNet50_vd distill</td>
<td align="center">74.28%/91.53%</td>
<td align="center">15</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">BlazeFace-Lite</td>
<td align="center">xxM</td>
<td align="center"></td>
<td align="center"></td>
<td align="center">ResNet50</td>
<td align="center">-</td>
<td align="center">76.50%/93.00%</td>
<td align="center">99</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">BlazeFace-NAS</td>
<td align="center">xxM</td>
<td align="center"></td>
<td align="center"></td>
<td align="center">ResNet101</td>
<td align="center">-</td>
<td align="center">77.56%/93.64%</td>
<td align="center">173</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">ResNet50</td>
<td align="center">ResNet101 distill</td>
<td align="center">77.29%/93.65%</td>
<td align="center">99</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</tbody>
</table>
<h3 id="_2"><a class="headerlink" href="#_2" title="Permanent link">#</a></h3>
<h3 id="13">1.3 图像分割<a class="headerlink" href="#13" title="Permanent link">#</a></h3>
<p>数据集:Cityscapes</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p><a name="trans1">[1]</a>:带_vd后缀代表该预训练模型使用了Mixup,Mixup相关介绍参考<a href="https://arxiv.org/abs/1710.09412">mixup: Beyond Empirical Risk Minimization</a></p>
</div>
<h2 id="2">2. 目标检测<a class="headerlink" href="#2" title="Permanent link">#</a></h2>
<p>数据集:Pasacl VOC &amp; COCO 2017 </p>
<h3 id="21">2.1 量化<a class="headerlink" href="#21" title="Permanent link">#</a></h3>
<p>数据集: COCO 2017</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">FP32 mIoU</th>
<th align="center">离线量化 mIoU</th>
<th align="center">量化训练 mIoU</th>
<th align="center">模型</th>
<th align="center">压缩方法</th>
<th align="center">数据集</th>
<th align="center">Image/GPU</th>
<th align="center">输入608 Box AP</th>
<th align="center">输入416 Box AP</th>
<th align="center">输入320 Box AP</th>
<th align="center">模型大小(MB)</th>
<th align="center">下载</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">DeepLabv3+/MobileNetv1</td>
<td align="center"><a href="">63.26</a></td>
<td align="center"><a href="">xx</a></td>
<td align="center"><a href="">xx</a></td>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">-</td>
<td align="center">COCO</td>
<td align="center">8</td>
<td align="center">29.3</td>
<td align="center">29.3</td>
<td align="center">27.1</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">DeepLabv3+/MobileNetv2</td>
<td align="center"><a href="https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz">69.81</a></td>
<td align="center"></td>
<td align="center"></td>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">quant_post</td>
<td align="center">COCO</td>
<td align="center">8</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</tbody>
</table>
<p>量化前后,模型大小的变化对比如下:</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">FP32</th>
<th align="center">离线量化</th>
<th align="center">量化训练</th>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">quant_aware</td>
<td align="center">COCO</td>
<td align="center">8</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</thead>
<tbody>
<tr>
<td align="center">DeepLabv3+/MobileNetv1</td>
<td align="center">xxM</td>
<td align="center">xxM</td>
<td align="center">xxM</td>
<td align="center">R50-dcn-YOLOv3 obj365_pretrain</td>
<td align="center">-</td>
<td align="center">COCO</td>
<td align="center">8</td>
<td align="center">41.4</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">DeepLabv3+/MobileNetv2</td>
<td align="center">xxM</td>
<td align="center"></td>
<td align="center"></td>
<td align="center">R50-dcn-YOLOv3 obj365_pretrain</td>
<td align="center">quant_post</td>
<td align="center">COCO</td>
<td align="center">8</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">R50-dcn-YOLOv3 obj365_pretrain</td>
<td align="center">quant_aware</td>
<td align="center">COCO</td>
<td align="center">8</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</tbody>
</table>
<h3 id="_3"><a class="headerlink" href="#_3" title="Permanent link">#</a></h3>
<h2 id="2">2. 剪枝<a class="headerlink" href="#2" title="Permanent link">#</a></h2>
<h3 id="21">2.1 图像分类<a class="headerlink" href="#21" title="Permanent link">#</a></h3>
<p>数据集:ImageNet1000类</p>
<p>数据集:WIDER-FACE</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">Top-1/Top-5</th>
<th align="center">模型</th>
<th align="center">压缩方法</th>
<th align="center">Image/GPU</th>
<th align="center">输入尺寸</th>
<th align="center">Easy/Medium/Hard</th>
<th align="center">模型大小(MB)</th>
<th align="center">下载</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">MobileNetV1</td>
<td align="center"><a href="http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar">70.99%/89.68%</a></td>
</tr>
<tr>
<td align="center">MobileNetV1 uniform -50%</td>
<td align="center"></td>
</tr>
<tr>
<td align="center">MobileNetV1 sensitive -xx%</td>
<td align="center"></td>
</tr>
<tr>
<td align="center">MobileNetV2</td>
<td align="center"><a href="https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar">72.15%/90.65%</a></td>
</tr>
<tr>
<td align="center">MobileNetV2 uniform -50%</td>
<td align="center"></td>
<td align="center">BlazeFace</td>
<td align="center">-</td>
<td align="center">8</td>
<td align="center">640</td>
<td align="center">0.915/0.892/0.797</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNetV2 sensitive -xx%</td>
<td align="center"></td>
<td align="center">BlazeFace</td>
<td align="center">quant_post</td>
<td align="center">8</td>
<td align="center">640</td>
<td align="center">xx/xx/xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">ResNet34</td>
<td align="center"><a href="https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar">74.57%/92.14%</a></td>
<td align="center">BlazeFace</td>
<td align="center">quant_aware</td>
<td align="center">8</td>
<td align="center">640</td>
<td align="center">xx/xx/xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">ResNet34 uniform -50%</td>
<td align="center"></td>
<td align="center">BlazeFace-Lite</td>
<td align="center">-</td>
<td align="center">8</td>
<td align="center">640</td>
<td align="center">0.909/0.885/0.781</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">ResNet34 auto -50%</td>
<td align="center"></td>
<td align="center">BlazeFace-Lite</td>
<td align="center">quant_post</td>
<td align="center">8</td>
<td align="center">640</td>
<td align="center">xx/xx/xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</tbody>
</table>
<p>剪枝前后,模型大小和计算量的变化对比如下:</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">baseline FLOPs</th>
<th align="center">baseline size</th>
<th align="center">剪枝后 FlOPs</th>
<th align="center">剪枝后 size</th>
<td align="center">BlazeFace-Lite</td>
<td align="center">quant_aware</td>
<td align="center">8</td>
<td align="center">640</td>
<td align="center">xx/xx/xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</thead>
<tbody>
<tr>
<td align="center">MobileNetV1</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">BlazeFace-NAS</td>
<td align="center">-</td>
<td align="center">8</td>
<td align="center">640</td>
<td align="center">0.837/0.807/0.658</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNetV2</td>
<td align="center">BlazeFace-NAS</td>
<td align="center">quant_post</td>
<td align="center">8</td>
<td align="center">640</td>
<td align="center">xx/xx/xx</td>
<td align="center">xx</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">ResNet34</td>
<td align="center">BlazeFace-NAS</td>
<td align="center">quant_aware</td>
<td align="center">8</td>
<td align="center">640</td>
<td align="center">xx/xx/xx</td>
<td align="center">xx</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</tbody>
</table>
<h3 id="_4"><a class="headerlink" href="#_4" title="Permanent link">#</a></h3>
<h3 id="22">2.2 目标检测<a class="headerlink" href="#22" title="Permanent link">#</a></h3>
<h3 id="22">2.2 剪枝<a class="headerlink" href="#22" title="Permanent link">#</a></h3>
<p>数据集:Pasacl VOC &amp; COCO 2017</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">模型</th>
<th align="center">压缩方法</th>
<th align="center">数据集</th>
<th align="center">输入尺寸</th>
<th align="center">Image/GPU</th>
<th align="center">baseline mAP</th>
<th align="center">敏感度剪枝 mAP</th>
<th align="center">输入608 Box AP</th>
<th align="center">输入416 Box AP</th>
<th align="center">输入320 Box AP</th>
<th align="center">模型大小(MB)</th>
<th align="center">FLOPs(M)</th>
<th align="center">arm时延(ms)</th>
<th align="center">P4时延(ms)</th>
<th align="center">下载</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">-</td>
<td align="center">Pasacl VOC</td>
<td align="center">608</td>
<td align="center">8</td>
<td align="center"><a href="">76.2</a></td>
<td align="center"><a href="">77.59</a> (-50%)</td>
<td align="center">76.2</td>
<td align="center">76.7</td>
<td align="center">75.3</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">sensitive -xx%</td>
<td align="center">Pasacl VOC</td>
<td align="center">416</td>
<td align="center"></td>
<td align="center"><a href="">76.7</a></td>
<td align="center"><a href="">xx</a></td>
<td align="center">8</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">Pasacl VOC</td>
<td align="center">320</td>
<td align="center"></td>
<td align="center"><a href="">75.2</a></td>
<td align="center"><a href="">xx</a></td>
<td align="center">-</td>
<td align="center">COCO</td>
<td align="center">8</td>
<td align="center">29.3</td>
<td align="center">29.3</td>
<td align="center">27.1</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">sensitive -xx%</td>
<td align="center">COCO</td>
<td align="center">608</td>
<td align="center"></td>
<td align="center"><a href="https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar">29.3</a></td>
<td align="center"><a href="">29.56</a> (-20%)</td>
<td align="center">8</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">R50-dcn-YOLOv3</td>
<td align="center">-</td>
<td align="center">COCO</td>
<td align="center">416</td>
<td align="center"></td>
<td align="center"><a href="">29.3</a></td>
<td align="center"><a href="">xx</a></td>
<td align="center">8</td>
<td align="center">39.1</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">R50-dcn-YOLOv3</td>
<td align="center">sensitive -xx%</td>
<td align="center">COCO</td>
<td align="center">320</td>
<td align="center"></td>
<td align="center"><a href="">27.1</a></td>
<td align="center"><a href="">xx</a></td>
<td align="center">8</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">R50-dcn-YOLOv3</td>
<td align="center">sensitive -xx%</td>
<td align="center">COCO</td>
<td align="center">608</td>
<td align="center"></td>
<td align="center"><a href="https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar">41.4</a></td>
<td align="center"><a href="">37.8</a> (-30%)</td>
<td align="center">8</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">R50-dcn-YOLOv3</td>
<td align="center">R50-dcn-YOLOv3 obj365_pretrain</td>
<td align="center">-</td>
<td align="center">COCO</td>
<td align="center">8</td>
<td align="center">41.4</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">R50-dcn-YOLOv3 obj365_pretrain</td>
<td align="center">sensitive -xx%</td>
<td align="center">COCO</td>
<td align="center">416</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center">8</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">R50-dcn-YOLOv3</td>
<td align="center">R50-dcn-YOLOv3 obj365_pretrain</td>
<td align="center">sensitive -xx%</td>
<td align="center">COCO</td>
<td align="center">320</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center">8</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</tbody>
</table>
<p>剪枝前后,模型大小和计算量的变化对比如下:</p>
<h3 id="23">2.3 蒸馏<a class="headerlink" href="#23" title="Permanent link">#</a></h3>
<p>数据集:Pasacl VOC &amp; COCO 2017</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">baseline FLOPs</th>
<th align="center">baseline size</th>
<th align="center">剪枝后 FlOPs</th>
<th align="center">剪枝后 size</th>
<th align="center">模型</th>
<th align="center">压缩方法</th>
<th align="center">数据集</th>
<th align="center">Image/GPU</th>
<th align="center">输入608 Box AP</th>
<th align="center">输入416 Box AP</th>
<th align="center">输入320 Box AP</th>
<th align="center">模型大小(MB)</th>
<th align="center">下载</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">MobileNet-V1-YOLOv3-VOC</td>
<td align="center">xx</td>
<td align="center">xxM</td>
<td align="center">xx</td>
<td align="center">xxM</td>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">-</td>
<td align="center">Pascal VOC</td>
<td align="center">8</td>
<td align="center">76.2</td>
<td align="center">76.7</td>
<td align="center">75.3</td>
<td align="center">94</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3-COCO</td>
<td align="center">xx</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center">ResNet34-YOLOv3</td>
<td align="center">-</td>
<td align="center">Pascal VOC</td>
<td align="center">8</td>
<td align="center">82.6</td>
<td align="center">81.9</td>
<td align="center">80.1</td>
<td align="center">162</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">R50-dcn-YOLOv3-COCO</td>
<td align="center">xx</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">ResNet34-YOLOv3 distill</td>
<td align="center">Pascal VOC</td>
<td align="center">8</td>
<td align="center">79.0</td>
<td align="center">78.2</td>
<td align="center">75.5</td>
<td align="center">94</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</tbody>
</table>
<h3 id="23">2.3 图像分割<a class="headerlink" href="#23" title="Permanent link">#</a></h3>
<p>数据集:Cityscapes</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">Baseline mIoU</th>
<th align="center">xx剪枝 mIoU</th>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">-</td>
<td align="center">COCO</td>
<td align="center">8</td>
<td align="center">29.3</td>
<td align="center">29.3</td>
<td align="center">27.0</td>
<td align="center">95</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</thead>
<tbody>
<tr>
<td align="center">DeepLabv3+/MobileNetv2</td>
<td align="center"><a href="https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz">69.81</a></td>
<td align="center"><a href="">xx</a></td>
<td align="center">ResNet34-YOLOv3</td>
<td align="center">-</td>
<td align="center">COCO</td>
<td align="center">8</td>
<td align="center">36.2</td>
<td align="center">34.3</td>
<td align="center">31.4</td>
<td align="center">163</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">ResNet34-YOLOv3 distill</td>
<td align="center">COCO</td>
<td align="center">8</td>
<td align="center">31.4</td>
<td align="center">30.0</td>
<td align="center">27.1</td>
<td align="center">95</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</tbody>
</table>
<p>剪枝前后,模型大小和计算量的变化对比如下:</p>
<h2 id="3">3. 图像分割<a class="headerlink" href="#3" title="Permanent link">#</a></h2>
<p>数据集:Cityscapes</p>
<h3 id="31">3.1 量化<a class="headerlink" href="#31" title="Permanent link">#</a></h3>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">baseline FLOPs</th>
<th align="center">baseline size</th>
<th align="center">剪枝后 FlOPs</th>
<th align="center">剪枝后 size</th>
<th align="center">模型</th>
<th align="center">压缩方法</th>
<th align="center">mIoU</th>
<th align="center">模型大小(MB)</th>
<th align="center">下载</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">DeepLabv3+/MobileNetv2</td>
<td align="center">DeepLabv3+/MobileNetv1</td>
<td align="center">-</td>
<td align="center">63.26</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">DeepLabv3+/MobileNetv1</td>
<td align="center">quant_post</td>
<td align="center">xx</td>
<td align="center">xxM</td>
<td align="center">xx</td>
<td align="center">xxM</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</tbody>
</table>
<h2 id="3">3. 蒸馏<a class="headerlink" href="#3" title="Permanent link">#</a></h2>
<h3 id="31">3.1 图象分类<a class="headerlink" href="#31" title="Permanent link">#</a></h3>
<p>数据集:ImageNet1000类</p>
<p>评价指标:Top-1/Top-5准确率</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">baseline</th>
<th align="center">蒸馏后</th>
<td align="center">DeepLabv3+/MobileNetv1</td>
<td align="center">quant_aware</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</thead>
<tbody>
<tr>
<td align="center">MobileNetV1</td>
<td align="center"><a href="http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar">70.99%/89.68%</a></td>
<td align="center"><a href="">72.79%/90.69%</a> (teacher: ResNet50_vd<sup><a href="#trans1">1</a></sup>)</td>
<td align="center">DeepLabv3+/MobileNetv2</td>
<td align="center">-</td>
<td align="center">69.81</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNetV2</td>
<td align="center"><a href="https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar">72.15%/90.65%</a></td>
<td align="center"><a href="">74.30%/91.52%</a> (teacher: ResNet50_vd)</td>
<td align="center">DeepLabv3+/MobileNetv2</td>
<td align="center">quant_post</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">ResNet50</td>
<td align="center"><a href="http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar">76.50%/93.00%</a></td>
<td align="center"><a href="">77.40%/93.48%</a> (teacher: ResNet101<sup><a href="#trans2">2</a></sup>)</td>
<td align="center">DeepLabv3+/MobileNetv2</td>
<td align="center">quant_aware</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</tbody>
</table>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p><a name="trans1">  [1]</a><a href="https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar">ResNet50_vd</a>预训练模型Top-1/Top-5准确率分别为79.12%/94.44%</p>
<p>带_vd后缀代表开启了Mixup训练,Mixup相关介绍参考<a href="https://arxiv.org/abs/1710.09412">mixup: Beyond Empirical Risk Minimization</a></p>
<p><a name="trans1">[2]</a><a href="https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar">ResNet101</a>预训练模型Top-1/Top-5准确率分别为77.56%/93.64%</p>
</div>
<h3 id="32">3.2 目标检测<a class="headerlink" href="#32" title="Permanent link">#</a></h3>
<p>数据集:Pasacl VOC &amp; COCO 2017</p>
<h3 id="32">3.2 剪枝<a class="headerlink" href="#32" title="Permanent link">#</a></h3>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">数据集</th>
<th align="center">输入尺寸</th>
<th align="center">Image/GPU</th>
<th align="center">baseline</th>
<th align="center">蒸馏后 mAP</th>
<th align="center">模型</th>
<th align="center">压缩方法</th>
<th align="center">mIoU</th>
<th align="center">模型大小(MB)</th>
<th align="center">FLOPs(M)</th>
<th align="center">arm时延(ms)</th>
<th align="center">P4时延(ms)</th>
<th align="center">下载</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">Pasacl VOC</td>
<td align="center">640</td>
<td align="center">16</td>
<td align="center"><a href="">76.2</a></td>
<td align="center"><a href="">79.0</a> (teacher: ResNet34-YOLOv3-VOC<sup><a href="#trans3">3</a></sup>)</td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">Pasacl VOC</td>
<td align="center">416</td>
<td align="center"></td>
<td align="center"><a href="">76.7</a></td>
<td align="center"><a href="">78.2</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">Pasacl VOC</td>
<td align="center">320</td>
<td align="center"></td>
<td align="center"><a href="">75.2</a></td>
<td align="center"><a href="">75.5</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">COCO</td>
<td align="center">640</td>
<td align="center"></td>
<td align="center"><a href="https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar">29.3</a></td>
<td align="center"><a href="">31.0</a> (teacher: ResNet34-YOLOv3-COCO<sup><a href="#trans4">4</a></sup>)</td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">COCO</td>
<td align="center">416</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center">DeepLabv3+/MobileNetv2</td>
<td align="center">-</td>
<td align="center">69.81</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">COCO</td>
<td align="center">320</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center">DeepLabv3+/MobileNetv2</td>
<td align="center">prune -xx%</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</tbody>
</table>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p><a name="trans1">[3]</a><a href="">ResNet34-YOLOv3-VOC</a>预训练模型的Box AP为82.6</p>
<p><a name="trans1">[4]</a><a href="">ResNet34-YOLOv3-COCO</a>预训练模型的Box AP为36.2</p>
</div>
</div>
</div>
......@@ -848,10 +993,10 @@
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../model_zoo2/" class="btn btn-neutral float-right" title="模型库2">Next <span class="icon icon-circle-arrow-right"></span></a>
<a href="../api/quantization_api/" class="btn btn-neutral float-right" title="量化">Next <span class="icon icon-circle-arrow-right"></span></a>
<a href="../algo/algo/" class="btn btn-neutral" title="算法原理"><span class="icon icon-circle-arrow-left"></span> Previous</a>
<a href=".." class="btn btn-neutral" title="Home"><span class="icon icon-circle-arrow-left"></span> Previous</a>
</div>
......@@ -879,10 +1024,10 @@
<a href="https://github.com/PaddlePaddle/PaddleSlim/" class="fa fa-github" style="float: left; color: #fcfcfc"> GitHub</a>
<span><a href="../algo/algo/" style="color: #fcfcfc;">&laquo; Previous</a></span>
<span><a href=".." style="color: #fcfcfc;">&laquo; Previous</a></span>
<span style="margin-left: 15px"><a href="../model_zoo2/" style="color: #fcfcfc">Next &raquo;</a></span>
<span style="margin-left: 15px"><a href="../api/quantization_api/" style="color: #fcfcfc">Next &raquo;</a></span>
</span>
</div>
......
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link rel="shortcut icon" href="../img/favicon.ico">
<title>模型库2 - PaddleSlim Docs</title>
<link href='https://fonts.googleapis.com/css?family=Lato:400,700|Roboto+Slab:400,700|Inconsolata:400,700' rel='stylesheet' type='text/css'>
<link rel="stylesheet" href="../css/theme.css" type="text/css" />
<link rel="stylesheet" href="../css/theme_extra.css" type="text/css" />
<link rel="stylesheet" href="//cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css">
<script>
// Current page data
var mkdocs_page_name = "\u6a21\u578b\u5e932";
var mkdocs_page_input_path = "model_zoo2.md";
var mkdocs_page_url = null;
</script>
<script src="../js/jquery-2.1.1.min.js" defer></script>
<script src="../js/modernizr-2.8.3.min.js" defer></script>
<script src="//cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
<script>hljs.initHighlightingOnLoad();</script>
</head>
<body class="wy-body-for-nav" role="document">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side stickynav">
<div class="wy-side-nav-search">
<a href=".." class="icon icon-home"> PaddleSlim Docs</a>
<div role="search">
<form id ="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" title="Type search term here" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul class="current">
<li class="toctree-l1">
<a class="" href="..">Home</a>
</li>
<li class="toctree-l1">
<span class="caption-text">API</span>
<ul class="subnav">
<li class="">
<a class="" href="../api/quantization_api/">量化</a>
</li>
<li class="">
<a class="" href="../api/prune_api/">剪枝与敏感度</a>
</li>
<li class="">
<a class="" href="../api/analysis_api/">模型分析</a>
</li>
<li class="">
<a class="" href="../api/single_distiller_api/">知识蒸馏</a>
</li>
<li class="">
<a class="" href="../api/nas_api/">SA搜索</a>
</li>
<li class="">
<a class="" href="../api/search_space/">搜索空间</a>
</li>
<li class="">
<a class="" href="../table_latency/">硬件延时评估表</a>
</li>
</ul>
</li>
<li class="toctree-l1">
<span class="caption-text">教程</span>
<ul class="subnav">
<li class="">
<a class="" href="../tutorials/quant_post_demo/">离线量化</a>
</li>
<li class="">
<a class="" href="../tutorials/quant_aware_demo/">量化训练</a>
</li>
<li class="">
<a class="" href="../tutorials/quant_embedding_demo/">Embedding量化</a>
</li>
<li class="">
<a class="" href="../tutorials/nas_demo/">SA搜索</a>
</li>
<li class="">
<a class="" href="../tutorials/distillation_demo/">知识蒸馏</a>
</li>
</ul>
</li>
<li class="toctree-l1">
<a class="" href="../algo/algo/">算法原理</a>
</li>
<li class="toctree-l1">
<a class="" href="../model_zoo/">模型库</a>
</li>
<li class="toctree-l1 current">
<a class="current" href="./">模型库2</a>
<ul class="subnav">
<li class="toctree-l2"><a href="#1">1. 量化</a></li>
<ul>
<li><a class="toctree-l3" href="#11">1.1 图象分类</a></li>
<li><a class="toctree-l3" href="#12">1.2 目标检测</a></li>
<li><a class="toctree-l3" href="#13">1.3 图像分割</a></li>
</ul>
<li class="toctree-l2"><a href="#2">2. 剪枝</a></li>
<ul>
<li><a class="toctree-l3" href="#21">2.1 图像分类</a></li>
<li><a class="toctree-l3" href="#22">2.2 目标检测</a></li>
<li><a class="toctree-l3" href="#23">2.3 图像分割</a></li>
</ul>
<li class="toctree-l2"><a href="#3">3. 蒸馏</a></li>
<ul>
<li><a class="toctree-l3" href="#31">3.1 图象分类</a></li>
<li><a class="toctree-l3" href="#32">3.2 目标检测</a></li>
</ul>
</ul>
</li>
<li class="toctree-l1">
<a class="" href="../model_zoo3/">模型库3</a>
</li>
</ul>
</div>
&nbsp;
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" role="navigation" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="..">PaddleSlim Docs</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="..">Docs</a> &raquo;</li>
<li>模型库2</li>
<li class="wy-breadcrumbs-aside">
<a href="https://github.com/PaddlePaddle/PaddleSlim/edit/master/docs/model_zoo2.md"
class="icon icon-github"> Edit on GitHub</a>
</li>
</ul>
<hr/>
</div>
<div role="main">
<div class="section">
<h2 id="1">1. 量化<a class="headerlink" href="#1" title="Permanent link">#</a></h2>
<h3 id="11">1.1 图象分类<a class="headerlink" href="#11" title="Permanent link">#</a></h3>
<p>数据集:ImageNet1000类</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">压缩方法</th>
<th align="center">Top-1/Top-5</th>
<th align="center">模型大小(MB)</th>
<th align="center">下载</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">MobileNetV1</td>
<td align="center">-</td>
<td align="center">70.99%/89.68%</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNetV1</td>
<td align="center">quant_psot</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNetV1</td>
<td align="center">quant_aware</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNetV2</td>
<td align="center">-</td>
<td align="center">72.15%/90.65%</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNetV2</td>
<td align="center">quant_post</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNetV2</td>
<td align="center">quant_aware</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">ResNet50</td>
<td align="center">-</td>
<td align="center">76.50%/93.00%</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">ResNet50</td>
<td align="center">quant_post</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">ResNet50</td>
<td align="center">quant_aware</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</tbody>
</table>
<h3 id="12">1.2 目标检测<a class="headerlink" href="#12" title="Permanent link">#</a></h3>
<p>数据集:COCO 2017 </p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">压缩方法</th>
<th align="center">Image/GPU</th>
<th align="center">输入608 Box AP</th>
<th align="center">输入416 Box AP</th>
<th align="center">输入320 Box AP</th>
<th align="center">模型大小(MB)</th>
<th align="center">下载</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">-</td>
<td align="center">8</td>
<td align="center">29.3</td>
<td align="center">29.3</td>
<td align="center">27.1</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">quant_post</td>
<td align="center">8</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">quant_aware</td>
<td align="center">8</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">R50-dcn-YOLOv3 FP32</td>
<td align="center">-</td>
<td align="center">8</td>
<td align="center">41.4</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">R50-dcn-YOLOv3</td>
<td align="center">quant_post</td>
<td align="center">8</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">R50-dcn-YOLOv3</td>
<td align="center">quant_aware</td>
<td align="center">8</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</tbody>
</table>
<p>数据集:WIDER-FACE</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">压缩方法</th>
<th align="center">Image/GPU</th>
<th align="center">输入尺寸</th>
<th align="center">Easy/Medium/Hard</th>
<th align="center">模型大小(MB)</th>
<th align="center">下载</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">BlazeFace</td>
<td align="center">-</td>
<td align="center">8</td>
<td align="center">640</td>
<td align="center">0.915/0.892/0.797</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">BlazeFace</td>
<td align="center">quant_post</td>
<td align="center">8</td>
<td align="center">640</td>
<td align="center">xx/xx/xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">BlazeFace</td>
<td align="center">quant_aware</td>
<td align="center">8</td>
<td align="center">640</td>
<td align="center">xx/xx/xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">BlazeFace-Lite</td>
<td align="center">-</td>
<td align="center">8</td>
<td align="center">640</td>
<td align="center">0.909/0.885/0.781</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">BlazeFace-Lite</td>
<td align="center">quant_post</td>
<td align="center">8</td>
<td align="center">640</td>
<td align="center">xx/xx/xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">BlazeFace-Lite</td>
<td align="center">quant_aware</td>
<td align="center">8</td>
<td align="center">640</td>
<td align="center">xx/xx/xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">BlazeFace-NAS</td>
<td align="center">-</td>
<td align="center">8</td>
<td align="center">640</td>
<td align="center">0.837/0.807/0.658</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">BlazeFace-NAS</td>
<td align="center">quant_post</td>
<td align="center">8</td>
<td align="center">640</td>
<td align="center">xx/xx/xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">BlazeFace-NAS</td>
<td align="center">quant_aware</td>
<td align="center">8</td>
<td align="center">640</td>
<td align="center">xx/xx/xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</tbody>
</table>
<h3 id="13">1.3 图像分割<a class="headerlink" href="#13" title="Permanent link">#</a></h3>
<p>数据集:Cityscapes</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">压缩方法</th>
<th align="center">mIoU</th>
<th align="center">模型大小(MB)</th>
<th align="center">下载</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">DeepLabv3+/MobileNetv1</td>
<td align="center">-</td>
<td align="center">63.26</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">DeepLabv3+/MobileNetv1</td>
<td align="center">quant_post</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">DeepLabv3+/MobileNetv1</td>
<td align="center">quant_aware</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">DeepLabv3+/MobileNetv2</td>
<td align="center">-</td>
<td align="center">69.81</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">DeepLabv3+/MobileNetv2</td>
<td align="center">quant_post</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">DeepLabv3+/MobileNetv2</td>
<td align="center">quant_aware</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</tbody>
</table>
<h2 id="2">2. 剪枝<a class="headerlink" href="#2" title="Permanent link">#</a></h2>
<h3 id="21">2.1 图像分类<a class="headerlink" href="#21" title="Permanent link">#</a></h3>
<p>数据集:ImageNet1000类</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">压缩方法</th>
<th align="center">Top-1/Top-5</th>
<th align="center">模型大小(MB)</th>
<th align="center">FLOPs</th>
<th align="center">下载</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">MobileNetV1</td>
<td align="center">-</td>
<td align="center">70.99%/89.68%</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNetV1</td>
<td align="center">uniform -xx%</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNetV1</td>
<td align="center">sensitive -xx%</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNetV2</td>
<td align="center">-</td>
<td align="center">72.15%/90.65%</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNetV2</td>
<td align="center">uniform -xx%</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNetV2</td>
<td align="center">sensitive -xx%</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">ResNet34</td>
<td align="center">-</td>
<td align="center">74.57%/92.14%</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">ResNet34</td>
<td align="center">uniform -xx%</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">ResNet34</td>
<td align="center">auto -xx%</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</tbody>
</table>
<h3 id="22">2.2 目标检测<a class="headerlink" href="#22" title="Permanent link">#</a></h3>
<p>数据集:Pasacl VOC &amp; COCO 2017</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th>压缩方法</th>
<th align="center">数据集</th>
<th align="center">Image/GPU</th>
<th align="center">输入608 mAP</th>
<th align="center">输入416 mAP</th>
<th align="center">输入320 mAP</th>
<th align="center">模型大小(MB)</th>
<th align="center">FLOPs</th>
<th align="center">下载</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td>-</td>
<td align="center">Pasacl VOC</td>
<td align="center">8</td>
<td align="center">76.2</td>
<td align="center">76.7</td>
<td align="center">75.3</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td>uniform -xx%</td>
<td align="center">Pasacl VOC</td>
<td align="center">8</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td>-</td>
<td align="center">COCO</td>
<td align="center">8</td>
<td align="center">29.3</td>
<td align="center">29.3</td>
<td align="center">27.1</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td>uniform -xx%</td>
<td align="center">COCO</td>
<td align="center">8</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">R50-dcn-YOLOv3</td>
<td>-</td>
<td align="center">COCO</td>
<td align="center">8</td>
<td align="center">41.4</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">R50-dcn-YOLOv3</td>
<td>uniform -xx%</td>
<td align="center">COCO</td>
<td align="center">8</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</tbody>
</table>
<h3 id="23">2.3 图像分割<a class="headerlink" href="#23" title="Permanent link">#</a></h3>
<p>数据集:Cityscapes</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">压缩方法</th>
<th align="center">mIoU</th>
<th align="center">模型大小(MB)</th>
<th align="center">FLOPs</th>
<th align="center">下载</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">DeepLabv3+/MobileNetv2</td>
<td align="center">-</td>
<td align="center">69.81</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">DeepLabv3+/MobileNetv2</td>
<td align="center">prune -xx%</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</tbody>
</table>
<h2 id="3">3. 蒸馏<a class="headerlink" href="#3" title="Permanent link">#</a></h2>
<h3 id="31">3.1 图象分类<a class="headerlink" href="#31" title="Permanent link">#</a></h3>
<p>数据集:ImageNet1000类</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">蒸馏 teacher</th>
<th align="center">Top-1/Top-5</th>
<th align="center">下载</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">MobileNetV1</td>
<td align="center">-</td>
<td align="center">70.99%/89.68%</td>
<td align="center"><a href="http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNetV1</td>
<td align="center">ResNet50_vd<sup><a href="#trans1">1</a></sup></td>
<td align="center">72.79%/90.69%</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNetV2</td>
<td align="center">-</td>
<td align="center">72.15%/90.65%</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNetV2</td>
<td align="center">ResNet50_vd<sup><a href="#trans1">1</a></sup></td>
<td align="center">74.30%/91.52%</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">ResNet50</td>
<td align="center">-</td>
<td align="center">76.50%/93.00%</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">ResNet50</td>
<td align="center">ResNet101<sup><a href="#trans2">2</a></sup></td>
<td align="center">77.40%/93.48%</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</tbody>
</table>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p><a name="trans1">  [1]</a><a href="https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar">ResNet50_vd</a>预训练模型Top-1/Top-5准确率分别为79.12%/94.44%</p>
<p>带_vd后缀代表开启了Mixup训练,Mixup相关介绍参考<a href="https://arxiv.org/abs/1710.09412">mixup: Beyond Empirical Risk Minimization</a></p>
<p><a name="trans2">[2]</a><a href="https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar">ResNet101</a>预训练模型Top-1/Top-5准确率分别为77.56%/93.64%</p>
</div>
<h3 id="32">3.2 目标检测<a class="headerlink" href="#32" title="Permanent link">#</a></h3>
<p>数据集:Pasacl VOC &amp; COCO 2017</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">蒸馏 teacher</th>
<th align="center">数据集</th>
<th align="center">Image/GPU</th>
<th align="center">输入640 mAP</th>
<th align="center">输入416 mAP</th>
<th align="center">输入320 mAP</th>
<th align="center">下载链接</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">-</td>
<td align="center">Pasacl VOC</td>
<td align="center">16</td>
<td align="center">76.2</td>
<td align="center">76.7</td>
<td align="center">75.3</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">ResNet34-YOLOv3-VOC<sup><a href="#trans3">3</a></sup></td>
<td align="center">Pasacl VOC</td>
<td align="center">16</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">-</td>
<td align="center">COCO</td>
<td align="center">16</td>
<td align="center">29.3</td>
<td align="center">29.3</td>
<td align="center">27.1</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">ResNet34-YOLOv3-COCO<sup><a href="#trans4">4</a></sup></td>
<td align="center">COCO</td>
<td align="center">16</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</tbody>
</table>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p><a name="trans3">[3]</a><a href="">ResNet34-YOLOv3-VOC</a>预训练模型的Box AP为82.6</p>
<p><a name="trans4">[4]</a><a href="">ResNet34-YOLOv3-COCO</a>预训练模型的Box AP为36.2</p>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../model_zoo3/" class="btn btn-neutral float-right" title="模型库3">Next <span class="icon icon-circle-arrow-right"></span></a>
<a href="../model_zoo/" class="btn btn-neutral" title="模型库"><span class="icon icon-circle-arrow-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<!-- Copyright etc -->
</div>
Built with <a href="http://www.mkdocs.org">MkDocs</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<div class="rst-versions" role="note" style="cursor: pointer">
<span class="rst-current-version" data-toggle="rst-current-version">
<a href="https://github.com/PaddlePaddle/PaddleSlim/" class="fa fa-github" style="float: left; color: #fcfcfc"> GitHub</a>
<span><a href="../model_zoo/" style="color: #fcfcfc;">&laquo; Previous</a></span>
<span style="margin-left: 15px"><a href="../model_zoo3/" style="color: #fcfcfc">Next &raquo;</a></span>
</span>
</div>
<script>var base_url = '..';</script>
<script src="../js/theme.js" defer></script>
<script src="../mathjax-config.js" defer></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML" defer></script>
<script src="../search/main.js" defer></script>
</body>
</html>
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link rel="shortcut icon" href="../img/favicon.ico">
<title>模型库3 - PaddleSlim Docs</title>
<link href='https://fonts.googleapis.com/css?family=Lato:400,700|Roboto+Slab:400,700|Inconsolata:400,700' rel='stylesheet' type='text/css'>
<link rel="stylesheet" href="../css/theme.css" type="text/css" />
<link rel="stylesheet" href="../css/theme_extra.css" type="text/css" />
<link rel="stylesheet" href="//cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css">
<script>
// Current page data
var mkdocs_page_name = "\u6a21\u578b\u5e933";
var mkdocs_page_input_path = "model_zoo3.md";
var mkdocs_page_url = null;
</script>
<script src="../js/jquery-2.1.1.min.js" defer></script>
<script src="../js/modernizr-2.8.3.min.js" defer></script>
<script src="//cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
<script>hljs.initHighlightingOnLoad();</script>
</head>
<body class="wy-body-for-nav" role="document">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side stickynav">
<div class="wy-side-nav-search">
<a href=".." class="icon icon-home"> PaddleSlim Docs</a>
<div role="search">
<form id ="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" title="Type search term here" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul class="current">
<li class="toctree-l1">
<a class="" href="..">Home</a>
</li>
<li class="toctree-l1">
<span class="caption-text">API</span>
<ul class="subnav">
<li class="">
<a class="" href="../api/quantization_api/">量化</a>
</li>
<li class="">
<a class="" href="../api/prune_api/">剪枝与敏感度</a>
</li>
<li class="">
<a class="" href="../api/analysis_api/">模型分析</a>
</li>
<li class="">
<a class="" href="../api/single_distiller_api/">知识蒸馏</a>
</li>
<li class="">
<a class="" href="../api/nas_api/">SA搜索</a>
</li>
<li class="">
<a class="" href="../api/search_space/">搜索空间</a>
</li>
<li class="">
<a class="" href="../table_latency/">硬件延时评估表</a>
</li>
</ul>
</li>
<li class="toctree-l1">
<span class="caption-text">教程</span>
<ul class="subnav">
<li class="">
<a class="" href="../tutorials/quant_post_demo/">离线量化</a>
</li>
<li class="">
<a class="" href="../tutorials/quant_aware_demo/">量化训练</a>
</li>
<li class="">
<a class="" href="../tutorials/quant_embedding_demo/">Embedding量化</a>
</li>
<li class="">
<a class="" href="../tutorials/nas_demo/">SA搜索</a>
</li>
<li class="">
<a class="" href="../tutorials/distillation_demo/">知识蒸馏</a>
</li>
</ul>
</li>
<li class="toctree-l1">
<a class="" href="../algo/algo/">算法原理</a>
</li>
<li class="toctree-l1">
<a class="" href="../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<a class="" href="../model_zoo2/">模型库2</a>
</li>
<li class="toctree-l1 current">
<a class="current" href="./">模型库3</a>
<ul class="subnav">
<li class="toctree-l2"><a href="#1">1. 图象分类</a></li>
<li class="toctree-l2"><a href="#2">2. 目标检测</a></li>
<li class="toctree-l2"><a href="#3">3. 图像分割</a></li>
</ul>
</li>
</ul>
</div>
&nbsp;
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" role="navigation" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="..">PaddleSlim Docs</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="..">Docs</a> &raquo;</li>
<li>模型库3</li>
<li class="wy-breadcrumbs-aside">
<a href="https://github.com/PaddlePaddle/PaddleSlim/edit/master/docs/model_zoo3.md"
class="icon icon-github"> Edit on GitHub</a>
</li>
</ul>
<hr/>
</div>
<div role="main">
<div class="section">
<h3 id="1">1. 图象分类<a class="headerlink" href="#1" title="Permanent link">#</a></h3>
<p>数据集:ImageNet1000类</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">压缩方法</th>
<th align="center">Top-1/Top-5</th>
<th align="center">模型大小(MB)</th>
<th align="center">FLOPs</th>
<th>下载</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">MobileNetV1</td>
<td align="center">-</td>
<td align="center">70.99%/89.68%</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNetV1</td>
<td align="center">quant_psot</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center">-</td>
<td><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNetV1</td>
<td align="center">quant_aware</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center">-</td>
<td><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNetV1</td>
<td align="center">uniform -xx%</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNetV1</td>
<td align="center">sensitive -xx%</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNetV1</td>
<td align="center">ResNet50_vd<sup><a href="#trans1">1</a></sup> distill</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center">-</td>
<td><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNetV2</td>
<td align="center">-</td>
<td align="center">72.15%/90.65%</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNetV2</td>
<td align="center">quant_post</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center">-</td>
<td><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNetV2</td>
<td align="center">quant_aware</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center">-</td>
<td><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNetV2</td>
<td align="center">uniform -xx%</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNetV2</td>
<td align="center">sensitive -xx%</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNetV2</td>
<td align="center">ResNet50_vd<sup><a href="#trans1">1</a></sup> distill</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center">-</td>
<td><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">ResNet34</td>
<td align="center">-</td>
<td align="center">74.57%/92.14%</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">ResNet34</td>
<td align="center">uniform -xx%</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">ResNet34</td>
<td align="center">auto -xx%</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">ResNet50</td>
<td align="center">-</td>
<td align="center">76.50%/93.00%</td>
<td align="center">xx</td>
<td align="center">-</td>
<td><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">ResNet50</td>
<td align="center">quant_post</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center">-</td>
<td><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">ResNet50</td>
<td align="center">quant_aware</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center">-</td>
<td><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">ResNet50</td>
<td align="center">ResNet101<sup><a href="#trans2">2</a></sup> distill</td>
<td align="center">xx%/xx%</td>
<td align="center">xx</td>
<td align="center">-</td>
<td><a href="">下载链接</a></td>
</tr>
</tbody>
</table>
<h3 id="2">2. 目标检测<a class="headerlink" href="#2" title="Permanent link">#</a></h3>
<p>数据集:Pasacl VOC &amp; COCO 2017 </p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">压缩方法</th>
<th align="center">数据集</th>
<th align="center">Image/GPU</th>
<th align="center">输入608 Box AP</th>
<th align="center">输入416 Box AP</th>
<th align="center">输入320 Box AP</th>
<th align="center">模型大小(MB)</th>
<th align="center">FLOPs</th>
<th align="center">下载</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">-</td>
<td align="center">Pasacl VOC</td>
<td align="center">8</td>
<td align="center">76.2</td>
<td align="center">76.7</td>
<td align="center">75.3</td>
<td align="center">xx</td>
<td align="center">-</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">uniform -xx%</td>
<td align="center">Pasacl VOC</td>
<td align="center">8</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">-</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">ResNet34-YOLOv3<sup><a href="#trans3">3</a></sup> distill</td>
<td align="center">Pasacl VOC</td>
<td align="center">16</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">-</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">-</td>
<td align="center">COCO</td>
<td align="center">8</td>
<td align="center">29.3</td>
<td align="center">29.3</td>
<td align="center">27.1</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">quant_post</td>
<td align="center">COCO</td>
<td align="center">8</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">-</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">quant_aware</td>
<td align="center">COCO</td>
<td align="center">8</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">-</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">uniform -xx%</td>
<td align="center">COCO</td>
<td align="center">8</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">ResNet34-YOLOv3<sup><a href="#trans4">4</a></sup> distill</td>
<td align="center">COCO</td>
<td align="center">16</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">-</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">R50-dcn-YOLOv3 FP32</td>
<td align="center">-</td>
<td align="center">COCO</td>
<td align="center">8</td>
<td align="center">41.4</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">R50-dcn-YOLOv3</td>
<td align="center">quant_post</td>
<td align="center">COCO</td>
<td align="center">8</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">-</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">R50-dcn-YOLOv3</td>
<td align="center">quant_aware</td>
<td align="center">COCO</td>
<td align="center">8</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">-</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">R50-dcn-YOLOv3</td>
<td align="center">uniform -xx%</td>
<td align="center">COCO</td>
<td align="center">8</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</tbody>
</table>
<p>数据集:WIDER-FACE</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">压缩方法</th>
<th align="center">Image/GPU</th>
<th align="center">输入尺寸</th>
<th align="center">Easy/Medium/Hard</th>
<th align="center">模型大小(MB)</th>
<th align="center">下载</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">BlazeFace</td>
<td align="center">-</td>
<td align="center">8</td>
<td align="center">640</td>
<td align="center">0.915/0.892/0.797</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">BlazeFace</td>
<td align="center">quant_post</td>
<td align="center">8</td>
<td align="center">640</td>
<td align="center">xx/xx/xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">BlazeFace</td>
<td align="center">quant_aware</td>
<td align="center">8</td>
<td align="center">640</td>
<td align="center">xx/xx/xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">BlazeFace-Lite</td>
<td align="center">-</td>
<td align="center">8</td>
<td align="center">640</td>
<td align="center">0.909/0.885/0.781</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">BlazeFace-Lite</td>
<td align="center">quant_post</td>
<td align="center">8</td>
<td align="center">640</td>
<td align="center">xx/xx/xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">BlazeFace-Lite</td>
<td align="center">quant_aware</td>
<td align="center">8</td>
<td align="center">640</td>
<td align="center">xx/xx/xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">BlazeFace-NAS</td>
<td align="center">-</td>
<td align="center">8</td>
<td align="center">640</td>
<td align="center">0.837/0.807/0.658</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">BlazeFace-NAS</td>
<td align="center">quant_post</td>
<td align="center">8</td>
<td align="center">640</td>
<td align="center">xx/xx/xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">BlazeFace-NAS</td>
<td align="center">quant_aware</td>
<td align="center">8</td>
<td align="center">640</td>
<td align="center">xx/xx/xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</tbody>
</table>
<h3 id="3">3. 图像分割<a class="headerlink" href="#3" title="Permanent link">#</a></h3>
<p>数据集:Cityscapes</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">压缩方法</th>
<th align="center">mIoU</th>
<th align="center">模型大小(MB)</th>
<th align="center">FLOPs</th>
<th align="center">下载</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">DeepLabv3+/MobileNetv1</td>
<td align="center">-</td>
<td align="center">63.26</td>
<td align="center">xx</td>
<td align="center">-</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">DeepLabv3+/MobileNetv1</td>
<td align="center">quant_post</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">-</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">DeepLabv3+/MobileNetv1</td>
<td align="center">quant_aware</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">-</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">DeepLabv3+/MobileNetv2</td>
<td align="center">-</td>
<td align="center">69.81</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">DeepLabv3+/MobileNetv2</td>
<td align="center">quant_post</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">-</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">DeepLabv3+/MobileNetv2</td>
<td align="center">quant_aware</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">-</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
<tr>
<td align="center">DeepLabv3+/MobileNetv2</td>
<td align="center">prune -xx%</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center">xx</td>
<td align="center"><a href="">下载链接</a></td>
</tr>
</tbody>
</table>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p><a name="trans1">  [1]</a><a href="https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar">ResNet50_vd</a>预训练模型Top-1/Top-5准确率分别为79.12%/94.44%</p>
<p>带_vd后缀代表开启了Mixup训练,Mixup相关介绍参考<a href="https://arxiv.org/abs/1710.09412">mixup: Beyond Empirical Risk Minimization</a></p>
<p><a name="trans2">[2]</a><a href="https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar">ResNet101</a>预训练模型Top-1/Top-5准确率分别为77.56%/93.64%</p>
<p><a name="trans3">[3]</a><a href="">ResNet34-YOLOv3-VOC</a>预训练模型的Box AP为82.6</p>
<p><a name="trans4">[4]</a><a href="">ResNet34-YOLOv3-COCO</a>预训练模型的Box AP为36.2</p>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../model_zoo2/" class="btn btn-neutral" title="模型库2"><span class="icon icon-circle-arrow-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<!-- Copyright etc -->
</div>
Built with <a href="http://www.mkdocs.org">MkDocs</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<div class="rst-versions" role="note" style="cursor: pointer">
<span class="rst-current-version" data-toggle="rst-current-version">
<a href="https://github.com/PaddlePaddle/PaddleSlim/" class="fa fa-github" style="float: left; color: #fcfcfc"> GitHub</a>
<span><a href="../model_zoo2/" style="color: #fcfcfc;">&laquo; Previous</a></span>
</span>
</div>
<script>var base_url = '..';</script>
<script src="../js/theme.js" defer></script>
<script src="../mathjax-config.js" defer></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML" defer></script>
<script src="../search/main.js" defer></script>
</body>
</html>
......@@ -48,6 +48,11 @@
<li class="toctree-l1">
<a class="" href="./model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<span class="caption-text">API</span>
<ul class="subnav">
<li class="">
......@@ -113,21 +118,6 @@
<a class="" href="./algo/algo/">算法原理</a>
</li>
<li class="toctree-l1">
<a class="" href="./model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<a class="" href="./model_zoo2/">模型库2</a>
</li>
<li class="toctree-l1">
<a class="" href="./model_zoo3/">模型库3</a>
</li>
</ul>
</div>
&nbsp;
......
因为 它太大了无法显示 source diff 。你可以改为 查看blob
......@@ -2,87 +2,77 @@
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<url>
<loc>None</loc>
<lastmod>2020-01-03</lastmod>
<lastmod>2020-01-07</lastmod>
<changefreq>daily</changefreq>
</url>
<url>
<loc>None</loc>
<lastmod>2020-01-03</lastmod>
<lastmod>2020-01-07</lastmod>
<changefreq>daily</changefreq>
</url>
<url>
<loc>None</loc>
<lastmod>2020-01-03</lastmod>
<lastmod>2020-01-07</lastmod>
<changefreq>daily</changefreq>
</url>
<url>
<loc>None</loc>
<lastmod>2020-01-03</lastmod>
<lastmod>2020-01-07</lastmod>
<changefreq>daily</changefreq>
</url>
<url>
<loc>None</loc>
<lastmod>2020-01-03</lastmod>
<lastmod>2020-01-07</lastmod>
<changefreq>daily</changefreq>
</url>
<url>
<loc>None</loc>
<lastmod>2020-01-03</lastmod>
<lastmod>2020-01-07</lastmod>
<changefreq>daily</changefreq>
</url>
<url>
<loc>None</loc>
<lastmod>2020-01-03</lastmod>
<lastmod>2020-01-07</lastmod>
<changefreq>daily</changefreq>
</url>
<url>
<loc>None</loc>
<lastmod>2020-01-03</lastmod>
<lastmod>2020-01-07</lastmod>
<changefreq>daily</changefreq>
</url>
<url>
<loc>None</loc>
<lastmod>2020-01-03</lastmod>
<lastmod>2020-01-07</lastmod>
<changefreq>daily</changefreq>
</url>
<url>
<loc>None</loc>
<lastmod>2020-01-03</lastmod>
<lastmod>2020-01-07</lastmod>
<changefreq>daily</changefreq>
</url>
<url>
<loc>None</loc>
<lastmod>2020-01-03</lastmod>
<lastmod>2020-01-07</lastmod>
<changefreq>daily</changefreq>
</url>
<url>
<loc>None</loc>
<lastmod>2020-01-03</lastmod>
<lastmod>2020-01-07</lastmod>
<changefreq>daily</changefreq>
</url>
<url>
<loc>None</loc>
<lastmod>2020-01-03</lastmod>
<lastmod>2020-01-07</lastmod>
<changefreq>daily</changefreq>
</url>
<url>
<loc>None</loc>
<lastmod>2020-01-03</lastmod>
<lastmod>2020-01-07</lastmod>
<changefreq>daily</changefreq>
</url>
<url>
<loc>None</loc>
<lastmod>2020-01-03</lastmod>
<changefreq>daily</changefreq>
</url>
<url>
<loc>None</loc>
<lastmod>2020-01-03</lastmod>
<changefreq>daily</changefreq>
</url>
<url>
<loc>None</loc>
<lastmod>2020-01-03</lastmod>
<lastmod>2020-01-07</lastmod>
<changefreq>daily</changefreq>
</url>
</urlset>
\ No newline at end of file
无法预览此类型文件
......@@ -55,6 +55,11 @@
<li class="toctree-l1">
<a class="" href="../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<span class="caption-text">API</span>
<ul class="subnav">
<li class="">
......@@ -138,21 +143,6 @@
<a class="" href="../algo/algo/">算法原理</a>
</li>
<li class="toctree-l1">
<a class="" href="../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<a class="" href="../model_zoo2/">模型库2</a>
</li>
<li class="toctree-l1">
<a class="" href="../model_zoo3/">模型库3</a>
</li>
</ul>
</div>
&nbsp;
......
......@@ -55,6 +55,11 @@
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<span class="caption-text">API</span>
<ul class="subnav">
<li class="">
......@@ -120,21 +125,6 @@
<a class="" href="../../algo/algo/">算法原理</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo2/">模型库2</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo3/">模型库3</a>
</li>
</ul>
</div>
&nbsp;
......
......@@ -55,6 +55,11 @@
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<span class="caption-text">API</span>
<ul class="subnav">
<li class="">
......@@ -143,21 +148,6 @@
<a class="" href="../../algo/algo/">算法原理</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo2/">模型库2</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo3/">模型库3</a>
</li>
</ul>
</div>
&nbsp;
......
......@@ -55,6 +55,11 @@
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<span class="caption-text">API</span>
<ul class="subnav">
<li class="">
......@@ -132,21 +137,6 @@
<a class="" href="../../algo/algo/">算法原理</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo2/">模型库2</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo3/">模型库3</a>
</li>
</ul>
</div>
&nbsp;
......
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link rel="shortcut icon" href="../../img/favicon.ico">
<title>卷积通道剪裁示例 - PaddleSlim Docs</title>
<link href='https://fonts.googleapis.com/css?family=Lato:400,700|Roboto+Slab:400,700|Inconsolata:400,700' rel='stylesheet' type='text/css'>
<link rel="stylesheet" href="../../css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../css/theme_extra.css" type="text/css" />
<link rel="stylesheet" href="//cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css">
<script>
// Current page data
var mkdocs_page_name = "\u5377\u79ef\u901a\u9053\u526a\u88c1\u793a\u4f8b";
var mkdocs_page_input_path = "tutorials/pruning_demo.md";
var mkdocs_page_url = null;
</script>
<script src="../../js/jquery-2.1.1.min.js" defer></script>
<script src="../../js/modernizr-2.8.3.min.js" defer></script>
<script src="//cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
<script>hljs.initHighlightingOnLoad();</script>
</head>
<body class="wy-body-for-nav" role="document">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side stickynav">
<div class="wy-side-nav-search">
<a href="../.." class="icon icon-home"> PaddleSlim Docs</a>
<div role="search">
<form id ="rtd-search-form" class="wy-form" action="../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" title="Type search term here" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul class="current">
<li class="toctree-l1">
<a class="" href="../..">Home</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<span class="caption-text">API</span>
<ul class="subnav">
<li class="">
<a class="" href="../../api/quantization_api/">量化</a>
</li>
<li class="">
<a class="" href="../../api/prune_api/">剪枝与敏感度</a>
</li>
<li class="">
<a class="" href="../../api/analysis_api/">模型分析</a>
</li>
<li class="">
<a class="" href="../../api/single_distiller_api/">知识蒸馏</a>
</li>
<li class="">
<a class="" href="../../api/nas_api/">SA搜索</a>
</li>
<li class="">
<a class="" href="../../api/search_space/">搜索空间</a>
</li>
<li class="">
<a class="" href="../../table_latency/">硬件延时评估表</a>
</li>
</ul>
</li>
<li class="toctree-l1">
<span class="caption-text">教程</span>
<ul class="subnav">
<li class="">
<a class="" href="../quant_post_demo/">离线量化</a>
</li>
<li class="">
<a class="" href="../quant_aware_demo/">量化训练</a>
</li>
<li class="">
<a class="" href="../quant_embedding_demo/">Embedding量化</a>
</li>
<li class="">
<a class="" href="../nas_demo/">SA搜索</a>
</li>
<li class="">
<a class="" href="../distillation_demo/">知识蒸馏</a>
</li>
</ul>
</li>
<li class="toctree-l1">
<a class="" href="../../algo/algo/">算法原理</a>
</li>
</ul>
</div>
&nbsp;
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" role="navigation" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../..">PaddleSlim Docs</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../..">Docs</a> &raquo;</li>
<li>卷积通道剪裁示例</li>
<li class="wy-breadcrumbs-aside">
<a href="https://github.com/PaddlePaddle/PaddleSlim/edit/master/docs/tutorials/pruning_demo.md"
class="icon icon-github"> Edit on GitHub</a>
</li>
</ul>
<hr/>
</div>
<div role="main">
<div class="section">
<h1 id="_1">卷积通道剪裁示例<a class="headerlink" href="#_1" title="Permanent link">#</a></h1>
<p>本示例将演示如何按指定的剪裁率对每个卷积层的通道数进行剪裁。该示例默认会自动下载并使用mnist数据。</p>
<p>当前示例支持以下分类模型:</p>
<ul>
<li>MobileNetV1</li>
<li>MobileNetV2</li>
<li>ResNet50</li>
<li>PVANet</li>
</ul>
<h2 id="_2">接口介绍<a class="headerlink" href="#_2" title="Permanent link">#</a></h2>
<p>该示例使用了<code>paddleslim.Pruner</code>工具类,用户接口使用介绍请参考:<a href="https://paddlepaddle.github.io/PaddleSlim/api/prune_api/">API文档</a></p>
<h2 id="_3">确定待裁参数<a class="headerlink" href="#_3" title="Permanent link">#</a></h2>
<p>不同模型的参数命名不同,在剪裁前需要确定待裁卷积层的参数名称。可通过以下方法列出所有参数名:</p>
<table class="codehilitetable"><tr><td class="linenos"><div class="linenodiv"><pre><span></span>1
2</pre></div></td><td class="code"><div class="codehilite"><pre><span></span><span class="k">for</span> <span class="nv">param</span> <span class="nv">in</span> <span class="nv">program</span>.<span class="nv">global_block</span><span class="ss">()</span>.<span class="nv">all_parameters</span><span class="ss">()</span>:
<span class="nv">print</span><span class="ss">(</span><span class="s2">&quot;</span><span class="s">param name: {}; shape: {}</span><span class="s2">&quot;</span>.<span class="nv">format</span><span class="ss">(</span><span class="nv">param</span>.<span class="nv">name</span>, <span class="nv">param</span>.<span class="nv">shape</span><span class="ss">))</span>
</pre></div>
</td></tr></table>
<p><code>train.py</code>脚本中,提供了<code>get_pruned_params</code>方法,根据用户设置的选项<code>--model</code>确定要裁剪的参数。</p>
<h2 id="_4">启动裁剪任务<a class="headerlink" href="#_4" title="Permanent link">#</a></h2>
<p>通过以下命令启动裁剪任务:</p>
<table class="codehilitetable"><tr><td class="linenos"><div class="linenodiv"><pre><span></span>1
2</pre></div></td><td class="code"><div class="codehilite"><pre><span></span><span class="n">export</span> <span class="n">CUDA_VISIBLE_DEVICES</span><span class="o">=</span><span class="mi">0</span>
<span class="n">python</span> <span class="n">train</span><span class="p">.</span><span class="n">py</span>
</pre></div>
</td></tr></table>
<p>执行<code>python train.py --help</code>查看更多选项。</p>
<h2 id="_5">注意<a class="headerlink" href="#_5" title="Permanent link">#</a></h2>
<ol>
<li>在接口<code>paddle.Pruner.prune</code>的参数中,<code>params</code><code>ratios</code>的长度需要一样。</li>
</ol>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<!-- Copyright etc -->
</div>
Built with <a href="http://www.mkdocs.org">MkDocs</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<div class="rst-versions" role="note" style="cursor: pointer">
<span class="rst-current-version" data-toggle="rst-current-version">
<a href="https://github.com/PaddlePaddle/PaddleSlim/" class="fa fa-github" style="float: left; color: #fcfcfc"> GitHub</a>
</span>
</div>
<script>var base_url = '../..';</script>
<script src="../../js/theme.js" defer></script>
<script src="../../mathjax-config.js" defer></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML" defer></script>
<script src="../../search/main.js" defer></script>
</body>
</html>
......@@ -55,6 +55,11 @@
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<span class="caption-text">API</span>
<ul class="subnav">
<li class="">
......@@ -134,21 +139,6 @@
<a class="" href="../../algo/algo/">算法原理</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo2/">模型库2</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo3/">模型库3</a>
</li>
</ul>
</div>
&nbsp;
......
......@@ -55,6 +55,11 @@
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<span class="caption-text">API</span>
<ul class="subnav">
<li class="">
......@@ -134,21 +139,6 @@
<a class="" href="../../algo/algo/">算法原理</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo2/">模型库2</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo3/">模型库3</a>
</li>
</ul>
</div>
&nbsp;
......
......@@ -55,6 +55,11 @@
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<span class="caption-text">API</span>
<ul class="subnav">
<li class="">
......@@ -134,21 +139,6 @@
<a class="" href="../../algo/algo/">算法原理</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo2/">模型库2</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo3/">模型库3</a>
</li>
</ul>
</div>
&nbsp;
......
......@@ -55,6 +55,11 @@
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<span class="caption-text">API</span>
<ul class="subnav">
<li class="">
......@@ -120,21 +125,6 @@
<a class="" href="../../algo/algo/">算法原理</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo/">模型库</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo2/">模型库2</a>
</li>
<li class="toctree-l1">
<a class="" href="../../model_zoo3/">模型库3</a>
</li>
</ul>
</div>
&nbsp;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册