diff --git a/README.md b/README.md
index 65eb7933b62836b01e9b3fc23a83b3312772ccdc..fd13143f967ae15a1dd02652145adab90a19a2d6 100755
--- a/README.md
+++ b/README.md
@@ -47,7 +47,7 @@ PaddleSlim支持以下功能,也支持自定义量化、裁剪等功能。
Quantization |
Pruning |
NAS |
- Distilling |
+ Distilling |
diff --git a/README_en.md b/README_en.md
index 0c46a65fce02508ad26ae0eb9b483bfb08ac47fd..18d2cbc9b5e25d592e3082ab3e7d71a5fe646693 100755
--- a/README_en.md
+++ b/README_en.md
@@ -96,7 +96,7 @@ pip install paddleslim==1.2.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
- [Algorithm Background](https://paddleslim.readthedocs.io/en/latest/intro_en.html): Introduce the background of quantization, pruning, distillation, NAS.
-- [PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection/tree/master/slim): Introduce how to use PaddleSlim in PaddleDetection library.
+- [PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/slim): Introduce how to use PaddleSlim in PaddleDetection library.
- [PaddleSeg](https://github.com/PaddlePaddle/PaddleSeg/tree/develop/slim): Introduce how to use PaddleSlim in PaddleSeg library.
@@ -112,9 +112,9 @@ Dataset: ImageNet2012; Model: MobileNetV1;
|Method |Accuracy(baseline: 70.91%) |Model Size(baseline: 17.0M)|
|:---:|:---:|:---:|
-| Knowledge Distillation(ResNet50)| [+1.06%]() |-|
-| Knowledge Distillation(ResNet50) + int8 quantization |[+1.10%]()| [-71.76%]()|
-| Pruning(FLOPs-50%) + int8 quantization|[-1.71%]()|[-86.47%]()|
+| Knowledge Distillation(ResNet50)| +1.06% |-|
+| Knowledge Distillation(ResNet50) + int8 quantization |+1.10%| -71.76%|
+| Pruning(FLOPs-50%) + int8 quantization|-1.71%|-86.47%|
### Object Detection
@@ -123,17 +123,17 @@ Dataset: ImageNet2012; Model: MobileNetV1;
| Method | mAP(baseline: 76.2%) | Model Size(baseline: 94MB) |
| :---------------------: | :------------: | :------------:|
-| Knowledge Distillation(ResNet34-YOLOv3) | [+2.8%]() | - |
-| Pruning(FLOPs -52.88%) | [+1.4%]() | [-67.76%]() |
-|Knowledge DistillationResNet34-YOLOv3)+Pruning(FLOPs-69.57%)| [+2.6%]()|[-67.00%]()|
+| Knowledge Distillation(ResNet34-YOLOv3) | +2.8% | - |
+| Pruning(FLOPs -52.88%) | +1.4% | -67.76% |
+|Knowledge DistillationResNet34-YOLOv3)+Pruning(FLOPs-69.57%)| +2.6%|-67.00%|
#### Dataset: COCO; Model: MobileNet-V1-YOLOv3
| Method | mAP(baseline: 29.3%) | Model Size|
| :---------------------: | :------------: | :------:|
-| Knowledge Distillation(ResNet34-YOLOv3) | [+2.1%]() |-|
-| Knowledge Distillation(ResNet34-YOLOv3)+Pruning(FLOPs-67.56%) | [-0.3%]() | [-66.90%]()|
+| Knowledge Distillation(ResNet34-YOLOv3) | +2.1% |-|
+| Knowledge Distillation(ResNet34-YOLOv3)+Pruning(FLOPs-67.56%) | -0.3% | -66.90%|
### NAS
@@ -141,6 +141,6 @@ Dataset: ImageNet2012; Model: MobileNetV2
|Device | Infer time cost | Top1 accuracy(baseline:71.90%) |
|:---------------:|:---------:|:--------------------:|
-| RK3288 | [-23%]() | +0.07% |
-| Android cellphone | [-20%]() | +0.16% |
-| iPhone 6s | [-17%]() | +0.32% |
+| RK3288 | -23% | +0.07% |
+| Android cellphone | -20% | +0.16% |
+| iPhone 6s | -17% | +0.32% |
diff --git a/demo/detection/README.md b/demo/detection/README.md
index a48853069ca3f9eaf2e03c2a30d8bb7ce27fb36e..32160d635bb858b7d1f7d1e8b7add2e2ef38b07a 100644
--- a/demo/detection/README.md
+++ b/demo/detection/README.md
@@ -83,7 +83,7 @@
### 蒸馏通道剪裁模型
-可通过高精度模型蒸馏通道剪裁后模型的方式,训练方法及相关示例见[蒸馏通道剪裁模型](https://github.com/PaddlePaddle/PaddleDetection/blob/master/slim/extensions/distill_pruned_model/distill_pruned_model_demo.ipynb)。
+可通过高精度模型蒸馏通道剪裁后模型的方式,训练方法及相关示例见[蒸馏通道剪裁模型](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/static/slim/extensions/distill_pruned_model/distill_pruned_model_demo.ipynb)。
COCO数据集上蒸馏通道剪裁模型库如下。
diff --git a/docs/zh_cn/model_zoo.md b/docs/zh_cn/model_zoo.md
index a2fa07cbbd27af81eb1f820956f268e98ec5fd38..b8f782f72b3e4a2bff7cb11aa96ccb6545a457c8 100644
--- a/docs/zh_cn/model_zoo.md
+++ b/docs/zh_cn/model_zoo.md
@@ -199,7 +199,7 @@ PaddleLite版本: v2.3
| BlazeFace-NAS | - | 8 | 640 | 83.7/80.7/65.8 | 244 | 21.117 |[下载链接](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas.tar) |
| BlazeFace-NASV2 | SANAS | 8 | 640 | 87.0/83.7/68.5 | 389 | 22.558 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas2.tar) |
-Note: 硬件延时时间是利用提供的硬件延时表得到的,硬件延时表是在855芯片上基于PaddleLite测试的结果。BlazeFace-NASV2的详细配置在[这里](https://github.com/PaddlePaddle/PaddleDetection/blob/master/configs/face_detection/blazeface_nas_v2.yml).
+Note: 硬件延时时间是利用提供的硬件延时表得到的,硬件延时表是在855芯片上基于PaddleLite测试的结果。BlazeFace-NASV2的详细配置在[这里](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/static/configs/face_detection/blazeface_nas_v2.yml)。
## 3. 图像分割
|