Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
f6cd9015
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
1 年多 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f6cd9015
编写于
2月 08, 2020
作者:
B
Bai Yifan
提交者:
GitHub
2月 08, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix model_zoo table format (#93)
上级
48d3306f
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
59 addition
and
501 deletion
+59
-501
docs/zh_cn/model_zoo.md
docs/zh_cn/model_zoo.md
+59
-501
未找到文件。
docs/zh_cn/model_zoo.md
浏览文件 @
f6cd9015
...
...
@@ -18,297 +18,39 @@
|ResNet50|quant_post|76.33%/93.02% (-0.17%/+0.02%)| 25.1| 1.19 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet50_quant_post.tar
)
|
|ResNet50|quant_aware| 76.48%/93.11% (-0.02%/+0.11%)| 25.1 | 1.17 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet50_quant_awre.tar
)
|
<table border=0 cellpadding=0 cellspacing=0 width=861 style='border-collapse:
collapse;table-layout:fixed;width:644pt'>
<col
width=
87
style=
'width:65pt'
>
<col
width=
124
style=
'mso-width-source:userset;mso-width-alt:3968;width:93pt'
>
<col
width=
128
style=
'mso-width-source:userset;mso-width-alt:4096;width:96pt'
>
<col
width=
87
span=
6
style=
'width:65pt'
>
<tr
height=
21
style=
'height:16.0pt'
>
<td
colspan=
3
height=
21
class=
xl63
width=
339
style=
'height:16.0pt;width:254pt'
>
分类模型Lite时延(ms)
</td>
<td
colspan=
3
class=
xl63
width=
261
style=
'width:195pt'
>
armv7
</td>
<td
colspan=
3
class=
xl63
width=
261
style=
'width:195pt'
>
armv8
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl63
style=
'height:16.0pt'
>
设备
</td>
<td
class=
xl63
>
模型类型
</td>
<td
class=
xl63
>
压缩策略
</td>
<td
class=
xl63
>
Thread 1
</td>
<td
class=
xl63
>
Thread 2
</td>
<td
class=
xl63
>
Thread 4
</td>
<td
class=
xl63
>
Thread 1
</td>
<td
class=
xl63
>
Thread 2
</td>
<td
class=
xl63
>
Thread 4
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
rowspan=
9
height=
189
class=
xl63
style=
'height:144.0pt'
>
高通835
</td>
<td
rowspan=
3
class=
xl63
>
MobileNetV1
</td>
<td
class=
xl63
>
FP32 baseline
</td>
<td
class=
xl63
>
96.1942
</td>
<td
class=
xl63
>
53.2058
</td>
<td
class=
xl63
>
32.4468
</td>
<td
class=
xl63
>
88.4955
</td>
<td
class=
xl63
>
47.95
</td>
<td
class=
xl63
>
27.5189
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl63
style=
'height:16.0pt'
>
quant_aware
</td>
<td
class=
xl63
>
60.8186
</td>
<td
class=
xl63
>
32.1931
</td>
<td
class=
xl63
>
16.4275
</td>
<td
class=
xl63
>
56.4311
</td>
<td
class=
xl63
>
29.5446
</td>
<td
class=
xl63
>
15.1053
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl63
style=
'height:16.0pt'
>
quant_post
</td>
<td
class=
xl63
>
60.5615
</td>
<td
class=
xl63
>
32.4016
</td>
<td
class=
xl63
>
16.6596
</td>
<td
class=
xl63
>
56.5266
</td>
<td
class=
xl63
>
29.7178
</td>
<td
class=
xl63
>
15.1459
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
rowspan=
3
height=
63
class=
xl63
style=
'height:48.0pt'
>
MobileNetV2
</td>
<td
class=
xl63
>
FP32 baseline
</td>
<td
class=
xl63
>
65.715
</td>
<td
class=
xl63
>
38.1346
</td>
<td
class=
xl63
>
25.155
</td>
<td
class=
xl63
>
61.3593
</td>
<td
class=
xl63
>
36.2038
</td>
<td
class=
xl63
>
22.849
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl63
style=
'height:16.0pt'
>
quant_aware
</td>
<td
class=
xl63
>
48.3655
</td>
<td
class=
xl63
>
30.2021
</td>
<td
class=
xl63
>
21.9303
</td>
<td
class=
xl63
>
46.1487
</td>
<td
class=
xl63
>
27.3146
</td>
<td
class=
xl63
>
18.3053
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl63
style=
'height:16.0pt'
>
quant_post
</td>
<td
class=
xl63
>
48.3495
</td>
<td
class=
xl63
>
30.3069
</td>
<td
class=
xl63
>
22.1506
</td>
<td
class=
xl63
>
45.8715
</td>
<td
class=
xl63
>
27.4105
</td>
<td
class=
xl63
>
18.2223
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
rowspan=
3
height=
63
class=
xl63
style=
'height:48.0pt'
>
ResNet50
</td>
<td
class=
xl63
>
FP32 baseline
</td>
<td
class=
xl63
>
526.811
</td>
<td
class=
xl63
>
319.6486
</td>
<td
class=
xl63
>
205.8345
</td>
<td
class=
xl63
>
506.1138
</td>
<td
class=
xl63
>
335.1584
</td>
<td
class=
xl63
>
214.8936
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl63
style=
'height:16.0pt'
>
quant_aware
</td>
<td
class=
xl63
>
475.4538
</td>
<td
class=
xl63
>
256.8672
</td>
<td
class=
xl63
>
139.699
</td>
<td
class=
xl63
>
461.7344
</td>
<td
class=
xl63
>
247.9506
</td>
<td
class=
xl63
>
145.9847
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl63
style=
'height:16.0pt'
>
quant_post
</td>
<td
class=
xl63
>
476.0507
</td>
<td
class=
xl63
>
256.5963
</td>
<td
class=
xl63
>
139.7266
</td>
<td
class=
xl63
>
461.9176
</td>
<td
class=
xl63
>
248.3795
</td>
<td
class=
xl63
>
149.353
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
rowspan=
9
height=
189
class=
xl63
style=
'height:144.0pt'
>
高通855
</td>
<td
rowspan=
3
class=
xl63
>
MobileNetV1
</td>
<td
class=
xl63
>
FP32 baseline
</td>
<td
class=
xl63
>
33.5086
</td>
<td
class=
xl63
>
19.5773
</td>
<td
class=
xl63
>
11.7534
</td>
<td
class=
xl63
>
31.3474
</td>
<td
class=
xl63
>
18.5382
</td>
<td
class=
xl63
>
10.0811
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl63
style=
'height:16.0pt'
>
quant_aware
</td>
<td
class=
xl63
>
36.7067
</td>
<td
class=
xl63
>
21.628
</td>
<td
class=
xl63
>
11.0372
</td>
<td
class=
xl63
>
14.0238
</td>
<td
class=
xl63
>
8.199
</td>
<td
class=
xl63
>
4.2588
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl63
style=
'height:16.0pt'
>
quant_post
</td>
<td
class=
xl63
>
37.0498
</td>
<td
class=
xl63
>
21.7081
</td>
<td
class=
xl63
>
11.0779
</td>
<td
class=
xl63
>
14.0947
</td>
<td
class=
xl63
>
8.1926
</td>
<td
class=
xl63
>
4.2934
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
rowspan=
3
height=
63
class=
xl63
style=
'height:48.0pt'
>
MobileNetV2
</td>
<td
class=
xl63
>
FP32 baseline
</td>
<td
class=
xl63
>
25.0396
</td>
<td
class=
xl63
>
15.2862
</td>
<td
class=
xl63
>
9.6609
</td>
<td
class=
xl63
>
22.909
</td>
<td
class=
xl63
>
14.1797
</td>
<td
class=
xl63
>
8.8325
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl63
style=
'height:16.0pt'
>
quant_aware
</td>
<td
class=
xl63
>
28.1583
</td>
<td
class=
xl63
>
18.3317
</td>
<td
class=
xl63
>
11.8103
</td>
<td
class=
xl63
>
16.9158
</td>
<td
class=
xl63
>
11.1606
</td>
<td
class=
xl63
>
7.4148
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl63
style=
'height:16.0pt'
>
quant_post
</td>
<td
class=
xl63
>
28.1631
</td>
<td
class=
xl63
>
18.3917
</td>
<td
class=
xl63
>
11.8333
</td>
<td
class=
xl63
>
16.9399
</td>
<td
class=
xl63
>
11.1772
</td>
<td
class=
xl63
>
7.4176
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
rowspan=
3
height=
63
class=
xl63
style=
'height:48.0pt'
>
ResNet50
</td>
<td
class=
xl63
>
FP32 baseline
</td>
<td
class=
xl63
>
185.3705
</td>
<td
class=
xl63
>
113.0825
</td>
<td
class=
xl63
>
87.0741
</td>
<td
class=
xl63
>
177.7367
</td>
<td
class=
xl63
>
110.0433
</td>
<td
class=
xl63
>
74.4114
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl63
style=
'height:16.0pt'
>
quant_aware
</td>
<td
class=
xl63
>
327.6883
</td>
<td
class=
xl63
>
202.4536
</td>
<td
class=
xl63
>
106.243
</td>
<td
class=
xl63
>
243.5621
</td>
<td
class=
xl63
>
150.0542
</td>
<td
class=
xl63
>
78.4205
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl63
style=
'height:16.0pt'
>
quant_post
</td>
<td
class=
xl63
>
328.2683
</td>
<td
class=
xl63
>
201.9937
</td>
<td
class=
xl63
>
106.744
</td>
<td
class=
xl63
>
242.6397
</td>
<td
class=
xl63
>
150.0338
</td>
<td
class=
xl63
>
79.8659
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
rowspan=
9
height=
189
class=
xl63
style=
'height:144.0pt'
>
麒麟970
</td>
<td
rowspan=
3
class=
xl63
>
MobileNetV1
</td>
<td
class=
xl63
>
FP32 baseline
</td>
<td
class=
xl63
>
101.2455
</td>
<td
class=
xl63
>
56.4053
</td>
<td
class=
xl63
>
35.6484
</td>
<td
class=
xl63
>
94.8985
</td>
<td
class=
xl63
>
51.7251
</td>
<td
class=
xl63
>
31.9511
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl63
style=
'height:16.0pt'
>
quant_aware
</td>
<td
class=
xl63
>
62.5012
</td>
<td
class=
xl63
>
32.1863
</td>
<td
class=
xl63
>
16.6018
</td>
<td
class=
xl63
>
57.7477
</td>
<td
class=
xl63
>
29.2116
</td>
<td
class=
xl63
>
15.0703
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl63
style=
'height:16.0pt'
>
quant_post
</td>
<td
class=
xl63
>
62.4412
</td>
<td
class=
xl63
>
32.2585
</td>
<td
class=
xl63
>
16.6215
</td>
<td
class=
xl63
>
57.825
</td>
<td
class=
xl63
>
29.2573
</td>
<td
class=
xl63
>
15.1206
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
rowspan=
3
height=
63
class=
xl63
style=
'height:48.0pt'
>
MobileNetV2
</td>
<td
class=
xl63
>
FP32 baseline
</td>
<td
class=
xl63
>
70.4176
</td>
<td
class=
xl63
>
42.0795
</td>
<td
class=
xl63
>
25.1939
</td>
<td
class=
xl63
>
68.9597
</td>
<td
class=
xl63
>
39.2145
</td>
<td
class=
xl63
>
22.6617
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl63
style=
'height:16.0pt'
>
quant_aware
</td>
<td
class=
xl63
>
52.9961
</td>
<td
class=
xl63
>
31.5323
</td>
<td
class=
xl63
>
22.1447
</td>
<td
class=
xl63
>
49.4858
</td>
<td
class=
xl63
>
28.0856
</td>
<td
class=
xl63
>
18.7287
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl63
style=
'height:16.0pt'
>
quant_post
</td>
<td
class=
xl63
>
53.0961
</td>
<td
class=
xl63
>
31.7987
</td>
<td
class=
xl63
>
21.8334
</td>
<td
class=
xl63
>
49.383
</td>
<td
class=
xl63
>
28.2358
</td>
<td
class=
xl63
>
18.3642
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
rowspan=
3
height=
63
class=
xl63
style=
'height:48.0pt'
>
ResNet50
</td>
<td
class=
xl63
>
FP32 baseline
</td>
<td
class=
xl63
>
586.8943
</td>
<td
class=
xl63
>
344.0858
</td>
<td
class=
xl63
>
228.2293
</td>
<td
class=
xl63
>
573.3344
</td>
<td
class=
xl63
>
351.4332
</td>
<td
class=
xl63
>
225.8006
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl63
style=
'height:16.0pt'
>
quant_aware
</td>
<td
class=
xl63
>
488.361
</td>
<td
class=
xl63
>
260.1697
</td>
<td
class=
xl63
>
142.416
</td>
<td
class=
xl63
>
479.5668
</td>
<td
class=
xl63
>
249.8485
</td>
<td
class=
xl63
>
138.1742
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl63
style=
'height:16.0pt'
>
quant_post
</td>
<td
class=
xl63
>
489.6188
</td>
<td
class=
xl63
>
258.3279
</td>
<td
class=
xl63
>
142.6063
</td>
<td
class=
xl63
>
480.0064
</td>
<td
class=
xl63
>
249.5339
</td>
<td
class=
xl63
>
138.5284
</td>
</tr>
<
![
if
supportMisalignedColumns
]
>
<tr
height=
0
style=
'display:none'
>
<td
width=
87
style=
'width:65pt'
></td>
<td
width=
124
style=
'width:93pt'
></td>
<td
width=
128
style=
'width:96pt'
></td>
<td
width=
87
style=
'width:65pt'
></td>
<td
width=
87
style=
'width:65pt'
></td>
<td
width=
87
style=
'width:65pt'
></td>
<td
width=
87
style=
'width:65pt'
></td>
<td
width=
87
style=
'width:65pt'
></td>
<td
width=
87
style=
'width:65pt'
></td>
</tr>
<
![
endif
]
>
</table>
分类模型Lite时延(ms)
| 设备 | 模型类型 | 压缩策略 | armv7 Thread 1 | armv7 Thread 2 | armv7 Thread 4 | armv8 Thread 1 | armv8 Thread 2 | armv8 Thread 4 |
| ------- | ----------- | ------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
| 高通835 | MobileNetV1 | FP32 baseline | 96.1942 | 53.2058 | 32.4468 | 88.4955 | 47.95 | 27.5189 |
| 高通835 | MobileNetV1 | quant_aware | 60.8186 | 32.1931 | 16.4275 | 56.4311 | 29.5446 | 15.1053 |
| 高通835 | MobileNetV1 | quant_post | 60.5615 | 32.4016 | 16.6596 | 56.5266 | 29.7178 | 15.1459 |
| 高通835 | MobileNetV2 | FP32 baseline | 65.715 | 38.1346 | 25.155 | 61.3593 | 36.2038 | 22.849 |
| 高通835 | MobileNetV2 | quant_aware | 48.3655 | 30.2021 | 21.9303 | 46.1487 | 27.3146 | 18.3053 |
| 高通835 | MobileNetV2 | quant_post | 48.3495 | 30.3069 | 22.1506 | 45.8715 | 27.4105 | 18.2223 |
| 高通835 | ResNet50 | FP32 baseline | 526.811 | 319.6486 | 205.8345 | 506.1138 | 335.1584 | 214.8936 |
| 高通835 | ResNet50 | quant_aware | 475.4538 | 256.8672 | 139.699 | 461.7344 | 247.9506 | 145.9847 |
| 高通835 | ResNet50 | quant_post | 476.0507 | 256.5963 | 139.7266 | 461.9176 | 248.3795 | 149.353 |
| 高通855 | MobileNetV1 | FP32 baseline | 33.5086 | 19.5773 | 11.7534 | 31.3474 | 18.5382 | 10.0811 |
| 高通855 | MobileNetV1 | quant_aware | 36.7067 | 21.628 | 11.0372 | 14.0238 | 8.199 | 4.2588 |
| 高通855 | MobileNetV1 | quant_post | 37.0498 | 21.7081 | 11.0779 | 14.0947 | 8.1926 | 4.2934 |
| 高通855 | MobileNetV2 | FP32 baseline | 25.0396 | 15.2862 | 9.6609 | 22.909 | 14.1797 | 8.8325 |
| 高通855 | MobileNetV2 | quant_aware | 28.1583 | 18.3317 | 11.8103 | 16.9158 | 11.1606 | 7.4148 |
| 高通855 | MobileNetV2 | quant_post | 28.1631 | 18.3917 | 11.8333 | 16.9399 | 11.1772 | 7.4176 |
| 高通855 | ResNet50 | FP32 baseline | 185.3705 | 113.0825 | 87.0741 | 177.7367 | 110.0433 | 74.4114 |
| 高通855 | ResNet50 | quant_aware | 327.6883 | 202.4536 | 106.243 | 243.5621 | 150.0542 | 78.4205 |
| 高通855 | ResNet50 | quant_post | 328.2683 | 201.9937 | 106.744 | 242.6397 | 150.0338 | 79.8659 |
| 麒麟970 | MobileNetV1 | FP32 baseline | 101.2455 | 56.4053 | 35.6484 | 94.8985 | 51.7251 | 31.9511 |
| 麒麟970 | MobileNetV1 | quant_aware | 62.5012 | 32.1863 | 16.6018 | 57.7477 | 29.2116 | 15.0703 |
| 麒麟970 | MobileNetV1 | quant_post | 62.4412 | 32.2585 | 16.6215 | 57.825 | 29.2573 | 15.1206 |
| 麒麟970 | MobileNetV2 | FP32 baseline | 70.4176 | 42.0795 | 25.1939 | 68.9597 | 39.2145 | 22.6617 |
| 麒麟970 | MobileNetV2 | quant_aware | 52.9961 | 31.5323 | 22.1447 | 49.4858 | 28.0856 | 18.7287 |
| 麒麟970 | MobileNetV2 | quant_post | 53.0961 | 31.7987 | 21.8334 | 49.383 | 28.2358 | 18.3642 |
| 麒麟970 | ResNet50 | FP32 baseline | 586.8943 | 344.0858 | 228.2293 | 573.3344 | 351.4332 | 225.8006 |
| 麒麟970 | ResNet50 | quant_aware | 488.361 | 260.1697 | 142.416 | 479.5668 | 249.8485 | 138.1742 |
| 麒麟970 | ResNet50 | quant_post | 489.6188 | 258.3279 | 142.6063 | 480.0064 | 249.5339 | 138.5284 |
...
...
@@ -430,216 +172,32 @@
| DeepLabv3+/MobileNetv2 | quant_post | 67.59 (-2.22) | 2.1 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv2_2049x1025_quant_post.tar
)
|
| DeepLabv3+/MobileNetv2 | quant_aware | 68.33 (-1.48) | 2.1 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv2_2049x1025_quant_aware.tar
)
|
<br/>
<table border=0 cellpadding=0 cellspacing=0 width=841 style='border-collapse:
collapse;table-layout:fixed;width:629pt'>
<col
width=
87
style=
'width:65pt'
>
<col
width=
105
style=
'mso-width-source:userset;mso-width-alt:3370;width:79pt'
>
<col
width=
127
style=
'mso-width-source:userset;mso-width-alt:4053;width:95pt'
>
<col
width=
87
span=
6
style=
'width:65pt'
>
<tr
height=
21
style=
'height:16.0pt'
>
<td
colspan=
3
height=
21
class=
xl65
width=
319
style=
'height:16.0pt;width:239pt'
>
图像分割模型Lite时延(ms),
输入尺寸769x769
</td>
<td
colspan=
3
class=
xl65
width=
261
style=
'width:195pt'
>
armv7
</td>
<td
colspan=
3
class=
xl65
width=
261
style=
'width:195pt'
>
armv8
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl65
style=
'height:16.0pt'
>
设备
</td>
<td
class=
xl65
>
模型类型
</td>
<td
class=
xl65
>
压缩策略
</td>
<td
class=
xl65
>
Thread 1
</td>
<td
class=
xl65
>
Thread 2
</td>
<td
class=
xl65
>
Thread 4
</td>
<td
class=
xl65
>
Thread 1
</td>
<td
class=
xl65
>
Thread 2
</td>
<td
class=
xl65
>
Thread 4
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
rowspan=
6
height=
126
class=
xl65
style=
'height:96.0pt'
>
高通835
</td>
<td
rowspan=
3
class=
xl66
width=
105
style=
'width:79pt'
>
Deeplabv3- MobileNetV1
</td>
<td
class=
xl65
>
FP32 baseline
</td>
<td
class=
xl65
>
1227.9894
</td>
<td
class=
xl65
>
734.1922
</td>
<td
class=
xl65
>
527.9592
</td>
<td
class=
xl65
>
1109.96
</td>
<td
class=
xl65
>
699.3818
</td>
<td
class=
xl65
>
479.0818
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl65
style=
'height:16.0pt'
>
quant_aware
</td>
<td
class=
xl65
>
848.6544
</td>
<td
class=
xl65
>
512.785
</td>
<td
class=
xl65
>
382.9915
</td>
<td
class=
xl65
>
752.3573
</td>
<td
class=
xl65
>
455.0901
</td>
<td
class=
xl65
>
307.8808
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl65
style=
'height:16.0pt'
>
quant_post
</td>
<td
class=
xl65
>
840.2323
</td>
<td
class=
xl65
>
510.103
</td>
<td
class=
xl65
>
371.9315
</td>
<td
class=
xl65
>
748.9401
</td>
<td
class=
xl65
>
452.1745
</td>
<td
class=
xl65
>
309.2084
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
rowspan=
3
height=
63
class=
xl66
width=
105
style=
'height:48.0pt;width:79pt'
>
Deeplabv3-MobileNetV2
</td>
<td
class=
xl65
>
FP32 baseline
</td>
<td
class=
xl65
>
1282.8126
</td>
<td
class=
xl65
>
793.2064
</td>
<td
class=
xl65
>
653.6538
</td>
<td
class=
xl65
>
1193.9908
</td>
<td
class=
xl65
>
737.1827
</td>
<td
class=
xl65
>
593.4522
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl65
style=
'height:16.0pt'
>
quant_aware
</td>
<td
class=
xl65
>
976.0495
</td>
<td
class=
xl65
>
659.0541
</td>
<td
class=
xl65
>
513.4279
</td>
<td
class=
xl65
>
892.1468
</td>
<td
class=
xl65
>
582.9847
</td>
<td
class=
xl65
>
484.7512
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl65
style=
'height:16.0pt'
>
quant_post
</td>
<td
class=
xl65
>
981.44
</td>
<td
class=
xl65
>
658.4969
</td>
<td
class=
xl65
>
538.6166
</td>
<td
class=
xl65
>
885.3273
</td>
<td
class=
xl65
>
586.1284
</td>
<td
class=
xl65
>
484.0018
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
rowspan=
6
height=
126
class=
xl65
style=
'height:96.0pt'
>
高通855
</td>
<td
rowspan=
3
class=
xl66
width=
105
style=
'width:79pt'
>
Deeplabv3-MobileNetV1
</td>
<td
class=
xl65
>
FP32 baseline
</td>
<td
class=
xl65
>
568.8748
</td>
<td
class=
xl65
>
339.8578
</td>
<td
class=
xl65
>
278.6316
</td>
<td
class=
xl65
>
420.6031
</td>
<td
class=
xl65
>
281.3197
</td>
<td
class=
xl65
>
217.5222
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl65
style=
'height:16.0pt'
>
quant_aware
</td>
<td
class=
xl65
>
608.7578
</td>
<td
class=
xl65
>
347.2087
</td>
<td
class=
xl65
>
260.653
</td>
<td
class=
xl65
>
241.2394
</td>
<td
class=
xl65
>
177.3456
</td>
<td
class=
xl65
>
143.9178
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl65
style=
'height:16.0pt'
>
quant_post
</td>
<td
class=
xl65
>
609.0142
</td>
<td
class=
xl65
>
347.3784
</td>
<td
class=
xl65
>
259.9825
</td>
<td
class=
xl65
>
239.4103
</td>
<td
class=
xl65
>
180.1894
</td>
<td
class=
xl65
>
139.9178
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
rowspan=
3
height=
63
class=
xl66
width=
105
style=
'height:48.0pt;width:79pt'
>
Deeplabv3-MobileNetV2
</td>
<td
class=
xl65
>
FP32 baseline
</td>
<td
class=
xl65
>
639.4425
</td>
<td
class=
xl65
>
390.1851
</td>
<td
class=
xl65
>
322.7014
</td>
<td
class=
xl65
>
477.7667
</td>
<td
class=
xl65
>
339.7411
</td>
<td
class=
xl65
>
262.2847
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl65
style=
'height:16.0pt'
>
quant_aware
</td>
<td
class=
xl65
>
703.7275
</td>
<td
class=
xl65
>
497.689
</td>
<td
class=
xl65
>
417.1296
</td>
<td
class=
xl65
>
394.3586
</td>
<td
class=
xl65
>
300.2503
</td>
<td
class=
xl65
>
239.9204
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl65
style=
'height:16.0pt'
>
quant_post
</td>
<td
class=
xl65
>
705.7589
</td>
<td
class=
xl65
>
474.4076
</td>
<td
class=
xl65
>
427.2951
</td>
<td
class=
xl65
>
394.8352
</td>
<td
class=
xl65
>
297.4035
</td>
<td
class=
xl65
>
264.6724
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
rowspan=
6
height=
126
class=
xl65
style=
'height:96.0pt'
>
麒麟970
</td>
<td
rowspan=
3
class=
xl66
width=
105
style=
'width:79pt'
>
Deeplabv3-MobileNetV1
</td>
<td
class=
xl65
>
FP32 baseline
</td>
<td
class=
xl65
>
1682.1792
</td>
<td
class=
xl65
>
1437.9774
</td>
<td
class=
xl65
>
1181.0246
</td>
<td
class=
xl65
>
1261.6739
</td>
<td
class=
xl65
>
1068.6537
</td>
<td
class=
xl65
>
690.8225
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl65
style=
'height:16.0pt'
>
quant_aware
</td>
<td
class=
xl65
>
1062.3394
</td>
<td
class=
xl65
>
1248.1014
</td>
<td
class=
xl65
>
878.3157
</td>
<td
class=
xl65
>
774.6356
</td>
<td
class=
xl65
>
710.6277
</td>
<td
class=
xl65
>
528.5376
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl65
style=
'height:16.0pt'
>
quant_post
</td>
<td
class=
xl65
>
1109.1917
</td>
<td
class=
xl65
>
1339.6218
</td>
<td
class=
xl65
>
866.3587
</td>
<td
class=
xl65
>
771.5164
</td>
<td
class=
xl65
>
716.5255
</td>
<td
class=
xl65
>
500.6497
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
rowspan=
3
height=
63
class=
xl66
width=
105
style=
'height:48.0pt;width:79pt'
>
Deeplabv3-MobileNetV2
</td>
<td
class=
xl65
>
FP32 baseline
</td>
<td
class=
xl65
>
1771.1301
</td>
<td
class=
xl65
>
1746.0569
</td>
<td
class=
xl65
>
1222.4805
</td>
<td
class=
xl65
>
1448.9739
</td>
<td
class=
xl65
>
1192.4491
</td>
<td
class=
xl65
>
760.606
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl65
style=
'height:16.0pt'
>
quant_aware
</td>
<td
class=
xl65
>
1320.2905
</td>
<td
class=
xl65
>
921.4522
</td>
<td
class=
xl65
>
676.0732
</td>
<td
class=
xl65
>
1145.8801
</td>
<td
class=
xl65
>
821.5685
</td>
<td
class=
xl65
>
590.1713
</td>
</tr>
<tr
height=
21
style=
'height:16.0pt'
>
<td
height=
21
class=
xl65
style=
'height:16.0pt'
>
quant_post
</td>
<td
class=
xl65
>
1320.386
</td>
<td
class=
xl65
>
918.5328
</td>
<td
class=
xl65
>
672.2481
</td>
<td
class=
xl65
>
1020.753
</td>
<td
class=
xl65
>
820.094
</td>
<td
class=
xl65
>
591.4114
</td>
</tr>
<
![
if
supportMisalignedColumns
]
>
<tr
height=
0
style=
'display:none'
>
<td
width=
87
style=
'width:65pt'
></td>
<td
width=
105
style=
'width:79pt'
></td>
<td
width=
127
style=
'width:95pt'
></td>
<td
width=
87
style=
'width:65pt'
></td>
<td
width=
87
style=
'width:65pt'
></td>
<td
width=
87
style=
'width:65pt'
></td>
<td
width=
87
style=
'width:65pt'
></td>
<td
width=
87
style=
'width:65pt'
></td>
<td
width=
87
style=
'width:65pt'
></td>
</tr>
<
![
endif
]
>
</table>
图像分割模型Lite时延(ms), 输入尺寸769x769
| 设备 | 模型类型 | 压缩策略 | armv7 Thread 1 | armv7 Thread 2 | armv7 Thread 4 | armv8 Thread 1 | armv8 Thread 2 | armv8 Thread 4 |
| ------- | ---------------------- | ------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
| 高通835 | Deeplabv3- MobileNetV1 | FP32 baseline | 1227.9894 | 734.1922 | 527.9592 | 1109.96 | 699.3818 | 479.0818 |
| 高通835 | Deeplabv3- MobileNetV1 | quant_aware | 848.6544 | 512.785 | 382.9915 | 752.3573 | 455.0901 | 307.8808 |
| 高通835 | Deeplabv3- MobileNetV1 | quant_post | 840.2323 | 510.103 | 371.9315 | 748.9401 | 452.1745 | 309.2084 |
| 高通835 | Deeplabv3-MobileNetV2 | FP32 baseline | 1282.8126 | 793.2064 | 653.6538 | 1193.9908 | 737.1827 | 593.4522 |
| 高通835 | Deeplabv3-MobileNetV2 | quant_aware | 976.0495 | 659.0541 | 513.4279 | 892.1468 | 582.9847 | 484.7512 |
| 高通835 | Deeplabv3-MobileNetV2 | quant_post | 981.44 | 658.4969 | 538.6166 | 885.3273 | 586.1284 | 484.0018 |
| 高通855 | Deeplabv3- MobileNetV1 | FP32 baseline | 568.8748 | 339.8578 | 278.6316 | 420.6031 | 281.3197 | 217.5222 |
| 高通855 | Deeplabv3- MobileNetV1 | quant_aware | 608.7578 | 347.2087 | 260.653 | 241.2394 | 177.3456 | 143.9178 |
| 高通855 | Deeplabv3- MobileNetV1 | quant_post | 609.0142 | 347.3784 | 259.9825 | 239.4103 | 180.1894 | 139.9178 |
| 高通855 | Deeplabv3-MobileNetV2 | FP32 baseline | 639.4425 | 390.1851 | 322.7014 | 477.7667 | 339.7411 | 262.2847 |
| 高通855 | Deeplabv3-MobileNetV2 | quant_aware | 703.7275 | 497.689 | 417.1296 | 394.3586 | 300.2503 | 239.9204 |
| 高通855 | Deeplabv3-MobileNetV2 | quant_post | 705.7589 | 474.4076 | 427.2951 | 394.8352 | 297.4035 | 264.6724 |
| 麒麟970 | Deeplabv3- MobileNetV1 | FP32 baseline | 1682.1792 | 1437.9774 | 1181.0246 | 1261.6739 | 1068.6537 | 690.8225 |
| 麒麟970 | Deeplabv3- MobileNetV1 | quant_aware | 1062.3394 | 1248.1014 | 878.3157 | 774.6356 | 710.6277 | 528.5376 |
| 麒麟970 | Deeplabv3- MobileNetV1 | quant_post | 1109.1917 | 1339.6218 | 866.3587 | 771.5164 | 716.5255 | 500.6497 |
| 麒麟970 | Deeplabv3-MobileNetV2 | FP32 baseline | 1771.1301 | 1746.0569 | 1222.4805 | 1448.9739 | 1192.4491 | 760.606 |
| 麒麟970 | Deeplabv3-MobileNetV2 | quant_aware | 1320.2905 | 921.4522 | 676.0732 | 1145.8801 | 821.5685 | 590.1713 |
| 麒麟970 | Deeplabv3-MobileNetV2 | quant_post | 1320.386 | 918.5328 | 672.2481 | 1020.753 | 820.094 | 591.4114 |
### 3.2 剪裁
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录