Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
eb45a9a1
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
大约 2 年 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
eb45a9a1
编写于
11月 01, 2019
作者:
W
wanghaoshuang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add simple prune API and unitest.
上级
3082ddab
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
1053 addition
and
2 deletion
+1053
-2
paddleslim/common/__init__.py
paddleslim/common/__init__.py
+4
-0
paddleslim/common/graph_wrapper.py
paddleslim/common/graph_wrapper.py
+401
-0
paddleslim/prune/__init__.py
paddleslim/prune/__init__.py
+1
-0
paddleslim/prune/pruner.py
paddleslim/prune/pruner.py
+551
-0
setup.py
setup.py
+6
-2
tests/layers.py
tests/layers.py
+31
-0
tests/test_prune.py
tests/test_prune.py
+59
-0
未找到文件。
paddleslim/common/__init__.py
浏览文件 @
eb45a9a1
...
...
@@ -11,3 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.
import
graph_wrapper
from
.graph_wrapper
import
*
__all__
=
graph_wrapper
.
__all__
paddleslim/common/graph_wrapper.py
0 → 100644
浏览文件 @
eb45a9a1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
copy
import
pickle
import
numpy
as
np
from
collections
import
OrderedDict
from
collections
import
Iterable
from
paddle.fluid.framework
import
Program
,
program_guard
,
Parameter
,
Variable
__all__
=
[
'GraphWrapper'
,
'VarWrapper'
,
'OpWrapper'
]
OPTIMIZER_OPS
=
[
'momentum'
,
'lars_momentum'
,
'adagrad'
,
'adam'
,
'adamax'
,
'dpsgd'
,
'decayed_adagrad'
,
'adadelta'
,
'rmsprop'
,
]
class
VarWrapper
(
object
):
def
__init__
(
self
,
var
,
graph
):
assert
isinstance
(
var
,
Variable
)
assert
isinstance
(
graph
,
GraphWrapper
)
self
.
_var
=
var
self
.
_graph
=
graph
def
__eq__
(
self
,
v
):
"""
Overwrite this function for ...in... syntax in python.
"""
return
self
.
_var
.
name
==
v
.
_var
.
name
def
name
(
self
):
"""
Get the name of the variable.
"""
return
self
.
_var
.
name
def
shape
(
self
):
"""
Get the shape of the varibale.
"""
return
self
.
_var
.
shape
def
set_shape
(
self
,
shape
):
"""
Set the shape of the variable.
"""
self
.
_var
.
desc
.
set_shape
(
shape
)
def
inputs
(
self
):
"""
Get all the operators that use this variable as output.
Returns:
list<OpWrapper>: A list of operators.
"""
ops
=
[]
for
op
in
self
.
_graph
.
ops
():
if
self
in
op
.
all_outputs
():
ops
.
append
(
op
)
return
ops
def
outputs
(
self
):
"""
Get all the operators that use this variable as input.
Returns:
list<OpWrapper>: A list of operators.
"""
ops
=
[]
for
op
in
self
.
_graph
.
ops
():
if
self
in
op
.
all_inputs
():
ops
.
append
(
op
)
return
ops
class
OpWrapper
(
object
):
def
__init__
(
self
,
op
,
graph
):
assert
isinstance
(
graph
,
GraphWrapper
)
self
.
_op
=
op
self
.
_graph
=
graph
def
__eq__
(
self
,
op
):
"""
Overwrite this function for ...in... syntax in python.
"""
return
self
.
idx
()
==
op
.
idx
()
def
all_inputs
(
self
):
"""
Get all the input variables of this operator.
"""
return
[
self
.
_graph
.
var
(
var_name
)
for
var_name
in
self
.
_op
.
input_arg_names
]
def
all_outputs
(
self
):
"""
Get all the output variables of this operator.
"""
return
[
self
.
_graph
.
var
(
var_name
)
for
var_name
in
self
.
_op
.
output_arg_names
]
def
idx
(
self
):
"""
Get the id of this operator.
"""
return
self
.
_op
.
idx
def
type
(
self
):
"""
Get the type of this operator.
"""
return
self
.
_op
.
type
def
is_bwd_op
(
self
):
"""
Whether this operator is backward op.
"""
return
self
.
type
().
endswith
(
'_grad'
)
def
is_opt_op
(
self
):
"""
Whether this operator is optimizer op.
"""
return
self
.
type
()
in
OPTIMIZER_OPS
def
inputs
(
self
,
name
):
"""
Get all the varibales by the input name.
"""
return
[
self
.
_graph
.
var
(
var_name
)
for
var_name
in
self
.
_op
.
input
(
name
)]
def
outputs
(
self
,
name
):
"""
Get all the varibales by the output name.
"""
return
[
self
.
_graph
.
var
(
var_name
)
for
var_name
in
self
.
_op
.
output
(
name
)
]
def
set_attr
(
self
,
key
,
value
):
"""
Set the value of attribute by attribute's name.
Args:
key(str): the attribute name.
value(bool|int|str|float|list): the value of the attribute.
"""
self
.
_op
.
_set_attr
(
key
,
value
)
def
attr
(
self
,
name
):
"""
Get the attribute by name.
Args:
name(str): the attribute name.
Returns:
bool|int|str|float|list: The attribute value. The return value
can be any valid attribute type.
"""
return
self
.
_op
.
attr
(
name
)
class
GraphWrapper
(
object
):
"""
It is a wrapper of paddle.fluid.framework.IrGraph with some special functions
for paddle slim framework.
"""
def
__init__
(
self
,
program
=
None
,
in_nodes
=
[],
out_nodes
=
[]):
"""
Args:
program(framework.Program): A program with
in_nodes(dict): A dict to indicate the input nodes of the graph.
The key is user-defined and human-readable name.
The value is the name of Variable.
out_nodes(dict): A dict to indicate the input nodes of the graph.
The key is user-defined and human-readable name.
The value is the name of Variable.
"""
super
(
GraphWrapper
,
self
).
__init__
()
self
.
program
=
Program
()
if
program
is
None
else
program
self
.
persistables
=
{}
self
.
teacher_persistables
=
{}
for
var
in
self
.
program
.
list_vars
():
if
var
.
persistable
:
self
.
persistables
[
var
.
name
]
=
var
self
.
compiled_graph
=
None
in_nodes
=
[]
if
in_nodes
is
None
else
in_nodes
out_nodes
=
[]
if
out_nodes
is
None
else
out_nodes
self
.
in_nodes
=
OrderedDict
(
in_nodes
)
self
.
out_nodes
=
OrderedDict
(
out_nodes
)
self
.
_attrs
=
OrderedDict
()
def
all_parameters
(
self
):
"""
Get all the parameters in this graph.
Returns:
list<VarWrapper>: A list of VarWrapper instances.
"""
params
=
[]
for
block
in
self
.
program
.
blocks
:
for
param
in
block
.
all_parameters
():
params
.
append
(
VarWrapper
(
param
,
self
))
return
params
def
is_parameter
(
self
,
var
):
"""
Whether the given variable is parameter.
Args:
var(VarWrapper): The given varibale.
"""
return
isinstance
(
var
.
_var
,
Parameter
)
def
is_persistable
(
self
,
var
):
"""
Whether the given variable is persistable.
Args:
var(VarWrapper): The given varibale.
"""
return
var
.
_var
.
persistable
def
ops
(
self
):
"""
Return all operator nodes included in the graph as a set.
"""
ops
=
[]
for
block
in
self
.
program
.
blocks
:
for
op
in
block
.
ops
:
ops
.
append
(
OpWrapper
(
op
,
self
))
return
ops
def
vars
(
self
):
"""
Get all the variables.
"""
return
[
VarWrapper
(
var
,
self
)
for
var
in
self
.
program
.
list_vars
()]
def
var
(
self
,
name
):
"""
Get the variable by variable name.
"""
return
VarWrapper
(
self
.
program
.
global_block
().
var
(
name
),
self
)
def
clone
(
self
,
for_test
=
False
):
"""
Clone a new graph from current graph.
Returns:
(GraphWrapper): The wrapper of a new graph.
"""
return
GraphWrapper
(
self
.
program
.
clone
(
for_test
),
copy
.
deepcopy
(
self
.
in_nodes
),
copy
.
deepcopy
(
self
.
out_nodes
))
def
program
(
self
):
"""
Get the program in current wrapper.
"""
return
self
.
program
def
pre_ops
(
self
,
op
):
"""
Get all the previous operators of target operator.
Args:
op(OpWrapper): Target operator..
Returns:
list<OpWrapper>: A list of operators.
"""
ops
=
[]
for
p
in
self
.
ops
():
for
in_var
in
op
.
all_inputs
():
if
in_var
in
p
.
all_outputs
():
ops
.
append
(
p
)
return
ops
def
next_ops
(
self
,
op
):
"""
Get all the next operators of target operator.
Args:
op(OpWrapper): Target operator..
Returns:
list<OpWrapper>: A list of operators.
"""
ops
=
[]
for
p
in
self
.
ops
():
for
out_var
in
op
.
all_outputs
():
if
out_var
in
p
.
all_inputs
():
ops
.
append
(
p
)
return
ops
def
get_param_by_op
(
self
,
op
):
"""
Get the parameters used by target operator.
"""
assert
isinstance
(
op
,
OpWrapper
)
params
=
[]
for
var
in
op
.
all_inputs
():
if
isinstance
(
var
.
_var
,
Parameter
):
params
.
append
(
var
)
assert
len
(
params
)
>
0
return
params
def
numel_params
(
self
):
"""
Get the number of elements in all parameters.
"""
ret
=
0
for
param
in
self
.
all_parameters
():
ret
+=
np
.
product
(
param
.
shape
())
return
ret
def
flops
(
self
,
only_conv
=
False
):
"""
Get the flops of current graph.
Args:
only_conv: Only calculating the conv layers. default: False.
Returns:
int: The flops of current graph.
"""
flops
=
0
for
op
in
self
.
ops
():
if
op
.
type
()
in
[
'conv2d'
,
'depthwise_conv2d'
]:
filter_shape
=
op
.
inputs
(
"Filter"
)[
0
].
shape
()
input_shape
=
op
.
inputs
(
"Input"
)[
0
].
shape
()
output_shape
=
op
.
outputs
(
"Output"
)[
0
].
shape
()
c_out
,
c_in
,
k_h
,
k_w
=
filter_shape
_
,
_
,
h_out
,
w_out
=
output_shape
groups
=
op
.
attr
(
"groups"
)
kernel_ops
=
k_h
*
k_w
*
(
c_in
/
groups
)
if
len
(
op
.
inputs
(
"Bias"
))
>
0
:
with_bias
=
1
else
:
with_bias
=
0
flops
+=
2
*
h_out
*
w_out
*
c_out
*
(
kernel_ops
+
with_bias
)
elif
op
.
type
()
==
'pool2d'
and
not
only_conv
:
input_shape
=
op
.
inputs
(
"X"
)[
0
].
shape
()
output_shape
=
op
.
outputs
(
"Out"
)[
0
].
shape
()
_
,
c_out
,
h_out
,
w_out
=
output_shape
k_size
=
op
.
attr
(
"ksize"
)
flops
+=
h_out
*
w_out
*
c_out
*
(
k_size
[
0
]
**
2
)
elif
op
.
type
()
==
'mul'
and
not
only_conv
:
x_shape
=
list
(
op
.
inputs
(
"X"
)[
0
].
shape
())
y_shape
=
op
.
inputs
(
"Y"
)[
0
].
shape
()
if
x_shape
[
0
]
==
-
1
:
x_shape
[
0
]
=
1
flops
+=
2
*
x_shape
[
0
]
*
x_shape
[
1
]
*
y_shape
[
1
]
elif
op
.
type
()
in
[
'relu'
,
'sigmoid'
,
'batch_norm'
]
and
not
only_conv
:
input_shape
=
list
(
op
.
inputs
(
"X"
)[
0
].
shape
())
if
input_shape
[
0
]
==
-
1
:
input_shape
[
0
]
=
1
flops
+=
np
.
product
(
input_shape
)
return
flops
def
update_param_shape
(
self
,
scope
):
"""
Update the shape of parameters in the graph according to tensors in scope.
It is used after loading pruned parameters from file.
"""
for
param
in
self
.
all_parameters
():
tensor_shape
=
np
.
array
(
scope
.
find_var
(
param
.
name
()).
get_tensor
()).
shape
param
.
set_shape
(
tensor_shape
)
def
infer_shape
(
self
):
"""
Update the groups of convolution layer according to current filters.
It is used after loading pruned parameters from file.
"""
for
op
in
self
.
ops
():
if
op
.
type
()
!=
'conditional_block'
:
op
.
_op
.
desc
.
infer_shape
(
op
.
_op
.
block
.
desc
)
def
update_groups_of_conv
(
self
):
for
op
in
self
.
ops
():
if
op
.
type
()
==
'depthwise_conv2d'
or
op
.
type
(
)
==
'depthwise_conv2d_grad'
:
op
.
set_attr
(
'groups'
,
op
.
inputs
(
'Filter'
)[
0
].
shape
()[
0
])
paddleslim/prune/__init__.py
浏览文件 @
eb45a9a1
...
...
@@ -11,3 +11,4 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
pruner
import
Pruner
paddleslim/prune/pruner.py
0 → 100644
浏览文件 @
eb45a9a1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
paddle.fluid
as
fluid
from
..common
import
VarWrapper
,
OpWrapper
,
GraphWrapper
__all__
=
[
"prune"
]
class
Pruner
():
def
__init__
(
self
,
criterion
=
"l1_norm"
):
"""
Args:
criterion(str): the criterion used to sort channels for pruning.
It only supports 'l1_norm' currently.
"""
self
.
criterion
=
criterion
def
prune
(
self
,
program
,
scope
,
params
,
ratios
,
place
=
None
,
lazy
=
False
,
only_graph
=
False
,
param_backup
=
None
,
param_shape_backup
=
None
):
"""
Pruning the given parameters.
Args:
program(fluid.Program): The program to be pruned.
scope(fluid.Scope): The scope storing paramaters to be pruned.
params(list<str>): A list of parameter names to be pruned.
ratios(list<float>): A list of ratios to be used to pruning parameters.
place(fluid.Place): The device place of filter parameters. Defalut: None.
lazy(bool): True means setting the pruned elements to zero.
False means cutting down the pruned elements. Default: False.
only_graph(bool): True means only modifying the graph.
False means modifying graph and variables in scope. Default: False.
param_backup(dict): A dict to backup the values of parameters. Default: None.
param_shape_backup(dict): A dict to backup the shapes of parameters. Default: None.
"""
self
.
pruned_list
=
[]
graph
=
GraphWrapper
(
program
.
clone
())
self
.
_prune_parameters
(
graph
,
scope
,
params
,
ratios
,
place
,
lazy
=
False
,
only_graph
=
False
,
param_backup
=
None
,
param_shape_backup
=
None
)
return
graph
.
program
def
_prune_filters_by_ratio
(
self
,
scope
,
params
,
ratio
,
place
,
lazy
=
False
,
only_graph
=
False
,
param_shape_backup
=
None
,
param_backup
=
None
):
"""
Pruning filters by given ratio.
Args:
scope(fluid.core.Scope): The scope used to pruning filters.
params(list<VarWrapper>): A list of filter parameters.
ratio(float): The ratio to be pruned.
place(fluid.Place): The device place of filter parameters.
lazy(bool): True means setting the pruned elements to zero.
False means cutting down the pruned elements.
only_graph(bool): True means only modifying the graph.
False means modifying graph and variables in scope.
"""
if
params
[
0
].
name
()
in
self
.
pruned_list
[
0
]:
return
param_t
=
scope
.
find_var
(
params
[
0
].
name
()).
get_tensor
()
pruned_idx
=
self
.
_cal_pruned_idx
(
params
[
0
].
name
(),
np
.
array
(
param_t
),
ratio
,
axis
=
0
)
for
param
in
params
:
assert
isinstance
(
param
,
VarWrapper
)
param_t
=
scope
.
find_var
(
param
.
name
()).
get_tensor
()
if
param_backup
is
not
None
and
(
param
.
name
()
not
in
param_backup
):
param_backup
[
param
.
name
()]
=
copy
.
deepcopy
(
np
.
array
(
param_t
))
pruned_param
=
self
.
_prune_tensor
(
np
.
array
(
param_t
),
pruned_idx
,
pruned_axis
=
0
,
lazy
=
lazy
)
if
not
only_graph
:
param_t
.
set
(
pruned_param
,
place
)
ori_shape
=
param
.
shape
()
if
param_shape_backup
is
not
None
and
(
param
.
name
()
not
in
param_shape_backup
):
param_shape_backup
[
param
.
name
()]
=
copy
.
deepcopy
(
param
.
shape
())
new_shape
=
list
(
param
.
shape
())
new_shape
[
0
]
=
pruned_param
.
shape
[
0
]
param
.
set_shape
(
new_shape
)
self
.
pruned_list
[
0
].
append
(
param
.
name
())
return
pruned_idx
def
_prune_parameter_by_idx
(
self
,
scope
,
params
,
pruned_idx
,
pruned_axis
,
place
,
lazy
=
False
,
only_graph
=
False
,
param_shape_backup
=
None
,
param_backup
=
None
):
"""
Pruning parameters in given axis.
Args:
scope(fluid.core.Scope): The scope storing paramaters to be pruned.
params(VarWrapper): The parameter to be pruned.
pruned_idx(list): The index of elements to be pruned.
pruned_axis(int): The pruning axis.
place(fluid.Place): The device place of filter parameters.
lazy(bool): True means setting the pruned elements to zero.
False means cutting down the pruned elements.
only_graph(bool): True means only modifying the graph.
False means modifying graph and variables in scope.
"""
if
params
[
0
].
name
()
in
self
.
pruned_list
[
pruned_axis
]:
return
for
param
in
params
:
assert
isinstance
(
param
,
VarWrapper
)
param_t
=
scope
.
find_var
(
param
.
name
()).
get_tensor
()
if
param_backup
is
not
None
and
(
param
.
name
()
not
in
param_backup
):
param_backup
[
param
.
name
()]
=
copy
.
deepcopy
(
np
.
array
(
param_t
))
pruned_param
=
self
.
_prune_tensor
(
np
.
array
(
param_t
),
pruned_idx
,
pruned_axis
,
lazy
=
lazy
)
if
not
only_graph
:
param_t
.
set
(
pruned_param
,
place
)
ori_shape
=
param
.
shape
()
if
param_shape_backup
is
not
None
and
(
param
.
name
()
not
in
param_shape_backup
):
param_shape_backup
[
param
.
name
()]
=
copy
.
deepcopy
(
param
.
shape
())
new_shape
=
list
(
param
.
shape
())
new_shape
[
pruned_axis
]
=
pruned_param
.
shape
[
pruned_axis
]
param
.
set_shape
(
new_shape
)
self
.
pruned_list
[
pruned_axis
].
append
(
param
.
name
())
def
_forward_search_related_op
(
self
,
graph
,
param
):
"""
Forward search operators that will be affected by pruning of param.
Args:
graph(GraphWrapper): The graph to be searched.
param(VarWrapper): The current pruned parameter.
Returns:
list<OpWrapper>: A list of operators.
"""
assert
isinstance
(
param
,
VarWrapper
)
visited
=
{}
for
op
in
graph
.
ops
():
visited
[
op
.
idx
()]
=
False
stack
=
[]
for
op
in
graph
.
ops
():
if
(
not
op
.
is_bwd_op
())
and
(
param
in
op
.
all_inputs
()):
stack
.
append
(
op
)
visit_path
=
[]
while
len
(
stack
)
>
0
:
top_op
=
stack
[
len
(
stack
)
-
1
]
if
visited
[
top_op
.
idx
()]
==
False
:
visit_path
.
append
(
top_op
)
visited
[
top_op
.
idx
()]
=
True
next_ops
=
None
if
top_op
.
type
()
==
"conv2d"
and
param
not
in
top_op
.
all_inputs
():
next_ops
=
None
elif
top_op
.
type
()
==
"mul"
:
next_ops
=
None
else
:
next_ops
=
self
.
_get_next_unvisited_op
(
graph
,
visited
,
top_op
)
if
next_ops
==
None
:
stack
.
pop
()
else
:
stack
+=
next_ops
return
visit_path
def
_get_next_unvisited_op
(
self
,
graph
,
visited
,
top_op
):
"""
Get next unvisited adjacent operators of given operators.
Args:
graph(GraphWrapper): The graph used to search.
visited(list): The ids of operators that has been visited.
top_op: The given operator.
Returns:
list<OpWrapper>: A list of operators.
"""
assert
isinstance
(
top_op
,
OpWrapper
)
next_ops
=
[]
for
op
in
graph
.
next_ops
(
top_op
):
if
(
visited
[
op
.
idx
()]
==
False
)
and
(
not
op
.
is_bwd_op
()):
next_ops
.
append
(
op
)
return
next_ops
if
len
(
next_ops
)
>
0
else
None
def
_get_accumulator
(
self
,
graph
,
param
):
"""
Get accumulators of given parameter. The accumulator was created by optimizer.
Args:
graph(GraphWrapper): The graph used to search.
param(VarWrapper): The given parameter.
Returns:
list<VarWrapper>: A list of accumulators which are variables.
"""
assert
isinstance
(
param
,
VarWrapper
)
params
=
[]
for
op
in
param
.
outputs
():
if
op
.
is_opt_op
():
for
out_var
in
op
.
all_outputs
():
if
graph
.
is_persistable
(
out_var
)
and
out_var
.
name
(
)
!=
param
.
name
():
params
.
append
(
out_var
)
return
params
def
_forward_pruning_ralated_params
(
self
,
graph
,
scope
,
param
,
place
,
ratio
=
None
,
pruned_idxs
=
None
,
lazy
=
False
,
only_graph
=
False
,
param_backup
=
None
,
param_shape_backup
=
None
):
"""
Pruning all the parameters affected by the pruning of given parameter.
Args:
graph(GraphWrapper): The graph to be searched.
scope(fluid.core.Scope): The scope storing paramaters to be pruned.
param(VarWrapper): The given parameter.
place(fluid.Place): The device place of filter parameters.
ratio(float): The target ratio to be pruned.
pruned_idx(list): The index of elements to be pruned.
lazy(bool): True means setting the pruned elements to zero.
False means cutting down the pruned elements.
only_graph(bool): True means only modifying the graph.
False means modifying graph and variables in scope.
"""
assert
isinstance
(
graph
,
GraphWrapper
),
"graph must be instance of slim.core.GraphWrapper"
assert
isinstance
(
param
,
VarWrapper
),
"param must be instance of slim.core.VarWrapper"
if
param
.
name
()
in
self
.
pruned_list
[
0
]:
return
related_ops
=
self
.
_forward_search_related_op
(
graph
,
param
)
if
ratio
is
None
:
assert
pruned_idxs
is
not
None
self
.
_prune_parameter_by_idx
(
scope
,
[
param
]
+
self
.
_get_accumulator
(
graph
,
param
),
pruned_idxs
,
pruned_axis
=
0
,
place
=
place
,
lazy
=
lazy
,
only_graph
=
only_graph
,
param_backup
=
param_backup
,
param_shape_backup
=
param_shape_backup
)
else
:
pruned_idxs
=
self
.
_prune_filters_by_ratio
(
scope
,
[
param
]
+
self
.
_get_accumulator
(
graph
,
param
),
ratio
,
place
,
lazy
=
lazy
,
only_graph
=
only_graph
,
param_backup
=
param_backup
,
param_shape_backup
=
param_shape_backup
)
corrected_idxs
=
pruned_idxs
[:]
for
idx
,
op
in
enumerate
(
related_ops
):
if
op
.
type
()
==
"conv2d"
and
(
param
not
in
op
.
all_inputs
()):
for
in_var
in
op
.
all_inputs
():
if
graph
.
is_parameter
(
in_var
):
conv_param
=
in_var
self
.
_prune_parameter_by_idx
(
scope
,
[
conv_param
]
+
self
.
_get_accumulator
(
graph
,
conv_param
),
corrected_idxs
,
pruned_axis
=
1
,
place
=
place
,
lazy
=
lazy
,
only_graph
=
only_graph
,
param_backup
=
param_backup
,
param_shape_backup
=
param_shape_backup
)
if
op
.
type
()
==
"depthwise_conv2d"
:
for
in_var
in
op
.
all_inputs
():
if
graph
.
is_parameter
(
in_var
):
conv_param
=
in_var
self
.
_prune_parameter_by_idx
(
scope
,
[
conv_param
]
+
self
.
_get_accumulator
(
graph
,
conv_param
),
corrected_idxs
,
pruned_axis
=
0
,
place
=
place
,
lazy
=
lazy
,
only_graph
=
only_graph
,
param_backup
=
param_backup
,
param_shape_backup
=
param_shape_backup
)
elif
op
.
type
()
==
"elementwise_add"
:
# pruning bias
for
in_var
in
op
.
all_inputs
():
if
graph
.
is_parameter
(
in_var
):
bias_param
=
in_var
self
.
_prune_parameter_by_idx
(
scope
,
[
bias_param
]
+
self
.
_get_accumulator
(
graph
,
bias_param
),
pruned_idxs
,
pruned_axis
=
0
,
place
=
place
,
lazy
=
lazy
,
only_graph
=
only_graph
,
param_backup
=
param_backup
,
param_shape_backup
=
param_shape_backup
)
elif
op
.
type
()
==
"mul"
:
# pruning fc layer
fc_input
=
None
fc_param
=
None
for
in_var
in
op
.
all_inputs
():
if
graph
.
is_parameter
(
in_var
):
fc_param
=
in_var
else
:
fc_input
=
in_var
idx
=
[]
feature_map_size
=
fc_input
.
shape
()[
2
]
*
fc_input
.
shape
()[
3
]
range_idx
=
np
.
array
(
range
(
feature_map_size
))
for
i
in
corrected_idxs
:
idx
+=
list
(
range_idx
+
i
*
feature_map_size
)
corrected_idxs
=
idx
self
.
_prune_parameter_by_idx
(
scope
,
[
fc_param
]
+
self
.
_get_accumulator
(
graph
,
fc_param
),
corrected_idxs
,
pruned_axis
=
0
,
place
=
place
,
lazy
=
lazy
,
only_graph
=
only_graph
,
param_backup
=
param_backup
,
param_shape_backup
=
param_shape_backup
)
elif
op
.
type
()
==
"concat"
:
concat_inputs
=
op
.
all_inputs
()
last_op
=
related_ops
[
idx
-
1
]
for
out_var
in
last_op
.
all_outputs
():
if
out_var
in
concat_inputs
:
concat_idx
=
concat_inputs
.
index
(
out_var
)
offset
=
0
for
ci
in
range
(
concat_idx
):
offset
+=
concat_inputs
[
ci
].
shape
()[
1
]
corrected_idxs
=
[
x
+
offset
for
x
in
pruned_idxs
]
elif
op
.
type
()
==
"batch_norm"
:
bn_inputs
=
op
.
all_inputs
()
mean
=
bn_inputs
[
2
]
variance
=
bn_inputs
[
3
]
alpha
=
bn_inputs
[
0
]
beta
=
bn_inputs
[
1
]
self
.
_prune_parameter_by_idx
(
scope
,
[
mean
]
+
self
.
_get_accumulator
(
graph
,
mean
),
corrected_idxs
,
pruned_axis
=
0
,
place
=
place
,
lazy
=
lazy
,
only_graph
=
only_graph
,
param_backup
=
param_backup
,
param_shape_backup
=
param_shape_backup
)
self
.
_prune_parameter_by_idx
(
scope
,
[
variance
]
+
self
.
_get_accumulator
(
graph
,
variance
),
corrected_idxs
,
pruned_axis
=
0
,
place
=
place
,
lazy
=
lazy
,
only_graph
=
only_graph
,
param_backup
=
param_backup
,
param_shape_backup
=
param_shape_backup
)
self
.
_prune_parameter_by_idx
(
scope
,
[
alpha
]
+
self
.
_get_accumulator
(
graph
,
alpha
),
corrected_idxs
,
pruned_axis
=
0
,
place
=
place
,
lazy
=
lazy
,
only_graph
=
only_graph
,
param_backup
=
param_backup
,
param_shape_backup
=
param_shape_backup
)
self
.
_prune_parameter_by_idx
(
scope
,
[
beta
]
+
self
.
_get_accumulator
(
graph
,
beta
),
corrected_idxs
,
pruned_axis
=
0
,
place
=
place
,
lazy
=
lazy
,
only_graph
=
only_graph
,
param_backup
=
param_backup
,
param_shape_backup
=
param_shape_backup
)
def
_prune_parameters
(
self
,
graph
,
scope
,
params
,
ratios
,
place
,
lazy
=
False
,
only_graph
=
False
,
param_backup
=
None
,
param_shape_backup
=
None
):
"""
Pruning the given parameters.
Args:
graph(GraphWrapper): The graph to be searched.
scope(fluid.core.Scope): The scope storing paramaters to be pruned.
params(list<str>): A list of parameter names to be pruned.
ratios(list<float>): A list of ratios to be used to pruning parameters.
place(fluid.Place): The device place of filter parameters.
pruned_idx(list): The index of elements to be pruned.
lazy(bool): True means setting the pruned elements to zero.
False means cutting down the pruned elements.
only_graph(bool): True means only modifying the graph.
False means modifying graph and variables in scope.
"""
assert
len
(
params
)
==
len
(
ratios
)
self
.
pruned_list
=
[[],
[]]
for
param
,
ratio
in
zip
(
params
,
ratios
):
assert
isinstance
(
param
,
str
)
or
isinstance
(
param
,
unicode
)
param
=
graph
.
var
(
param
)
self
.
_forward_pruning_ralated_params
(
graph
,
scope
,
param
,
place
,
ratio
=
ratio
,
lazy
=
lazy
,
only_graph
=
only_graph
,
param_backup
=
param_backup
,
param_shape_backup
=
param_shape_backup
)
ops
=
param
.
outputs
()
for
op
in
ops
:
if
op
.
type
()
==
'conv2d'
:
brother_ops
=
self
.
_search_brother_ops
(
graph
,
op
)
for
broher
in
brother_ops
:
for
p
in
graph
.
get_param_by_op
(
broher
):
self
.
_forward_pruning_ralated_params
(
graph
,
scope
,
p
,
place
,
ratio
=
ratio
,
lazy
=
lazy
,
only_graph
=
only_graph
,
param_backup
=
param_backup
,
param_shape_backup
=
param_shape_backup
)
def
_search_brother_ops
(
self
,
graph
,
op_node
):
"""
Search brother operators that was affected by pruning of given operator.
Args:
graph(GraphWrapper): The graph to be searched.
op_node(OpWrapper): The start node for searching.
Returns:
list<VarWrapper>: A list of operators.
"""
visited
=
[
op_node
.
idx
()]
stack
=
[]
brothers
=
[]
for
op
in
graph
.
next_ops
(
op_node
):
if
(
op
.
type
()
!=
'conv2d'
)
and
(
op
.
type
()
!=
'fc'
)
and
(
not
op
.
is_bwd_op
()):
stack
.
append
(
op
)
visited
.
append
(
op
.
idx
())
while
len
(
stack
)
>
0
:
top_op
=
stack
.
pop
()
for
parent
in
graph
.
pre_ops
(
top_op
):
if
parent
.
idx
()
not
in
visited
and
(
not
parent
.
is_bwd_op
()):
if
((
parent
.
type
()
==
'conv2d'
)
or
(
parent
.
type
()
==
'fc'
)):
brothers
.
append
(
parent
)
else
:
stack
.
append
(
parent
)
visited
.
append
(
parent
.
idx
())
for
child
in
graph
.
next_ops
(
top_op
):
if
(
child
.
type
()
!=
'conv2d'
)
and
(
child
.
type
()
!=
'fc'
)
and
(
child
.
idx
()
not
in
visited
)
and
(
not
child
.
is_bwd_op
()):
stack
.
append
(
child
)
visited
.
append
(
child
.
idx
())
return
brothers
def
_cal_pruned_idx
(
self
,
name
,
param
,
ratio
,
axis
):
"""
Calculate the index to be pruned on axis by given pruning ratio.
Args:
name(str): The name of parameter to be pruned.
param(np.array): The data of parameter to be pruned.
ratio(float): The ratio to be pruned.
axis(int): The axis to be used for pruning given parameter.
If it is None, the value in self.pruning_axis will be used.
default: None.
Returns:
list<int>: The indexes to be pruned on axis.
"""
prune_num
=
int
(
round
(
param
.
shape
[
axis
]
*
ratio
))
reduce_dims
=
[
i
for
i
in
range
(
len
(
param
.
shape
))
if
i
!=
axis
]
if
self
.
criterion
==
'l1_norm'
:
criterions
=
np
.
sum
(
np
.
abs
(
param
),
axis
=
tuple
(
reduce_dims
))
pruned_idx
=
criterions
.
argsort
()[:
prune_num
]
return
pruned_idx
def
_prune_tensor
(
self
,
tensor
,
pruned_idx
,
pruned_axis
,
lazy
=
False
):
"""
Pruning a array by indexes on given axis.
Args:
tensor(numpy.array): The target array to be pruned.
pruned_idx(list<int>): The indexes to be pruned.
pruned_axis(int): The axis of given array to be pruned on.
lazy(bool): True means setting the pruned elements to zero.
False means remove the pruned elements from memory.
default: False.
Returns:
numpy.array: The pruned array.
"""
mask
=
np
.
zeros
(
tensor
.
shape
[
pruned_axis
],
dtype
=
bool
)
mask
[
pruned_idx
]
=
True
def
func
(
data
):
return
data
[
~
mask
]
def
lazy_func
(
data
):
data
[
mask
]
=
0
return
data
if
lazy
:
return
np
.
apply_along_axis
(
lazy_func
,
pruned_axis
,
tensor
)
else
:
return
np
.
apply_along_axis
(
func
,
pruned_axis
,
tensor
)
setup.py
浏览文件 @
eb45a9a1
...
...
@@ -33,8 +33,12 @@ with open('./requirements.txt') as f:
setup_requires
=
f
.
read
().
splitlines
()
packages
=
[
'paddleslim'
,
'paddleslim.prune'
,
'paddleslim.dist'
,
'paddleslim.nas'
,
'paddleslim.analysis'
,
'paddleslim.quant'
'paddleslim'
,
'paddleslim.prune'
,
'paddleslim.dist'
,
'paddleslim.nas'
,
'paddleslim.analysis'
,
'paddleslim.quant'
,
]
setup
(
...
...
tests/layers.py
0 → 100644
浏览文件 @
eb45a9a1
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
def
conv_bn_layer
(
input
,
num_filters
,
filter_size
,
name
,
stride
=
1
,
groups
=
1
,
act
=
None
):
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
,
name
=
name
+
"_out"
)
bn_name
=
name
+
"_bn"
return
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
,
name
=
bn_name
+
'_output'
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
,
)
tests/test_prune.py
0 → 100644
浏览文件 @
eb45a9a1
import
sys
sys
.
path
.
append
(
"../"
)
import
unittest
import
paddle.fluid
as
fluid
from
paddleslim.prune
import
Pruner
from
layers
import
conv_bn_layer
class
TestPrune
(
unittest
.
TestCase
):
def
test_prune
(
self
):
main_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main_program
,
startup_program
):
input
=
fluid
.
data
(
name
=
"image"
,
shape
=
[
None
,
3
,
16
,
16
])
conv1
=
conv_bn_layer
(
input
,
8
,
3
,
"conv1"
)
conv2
=
conv_bn_layer
(
conv1
,
8
,
3
,
"conv2"
)
sum1
=
conv1
+
conv2
conv3
=
conv_bn_layer
(
sum1
,
8
,
3
,
"conv3"
)
conv4
=
conv_bn_layer
(
conv3
,
8
,
3
,
"conv4"
)
sum2
=
conv4
+
sum1
conv5
=
conv_bn_layer
(
sum2
,
8
,
3
,
"conv5"
)
conv6
=
conv_bn_layer
(
conv5
,
8
,
3
,
"conv6"
)
shapes
=
{}
for
param
in
main_program
.
global_block
().
all_parameters
():
shapes
[
param
.
name
]
=
param
.
shape
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
scope
=
fluid
.
Scope
()
exe
.
run
(
startup_program
,
scope
=
scope
)
pruner
=
Pruner
()
main_program
=
pruner
.
prune
(
main_program
,
scope
,
params
=
[
"conv4_weights"
],
ratios
=
[
0.5
],
place
=
place
,
lazy
=
False
,
only_graph
=
False
,
param_backup
=
None
,
param_shape_backup
=
None
)
shapes
=
{
"conv5_weights"
:
(
8L
,
4L
,
3L
,
3L
),
"conv1_weights"
:
(
4L
,
3L
,
3L
,
3L
),
"conv6_weights"
:
(
8L
,
8L
,
3L
,
3L
),
"conv3_weights"
:
(
8L
,
4L
,
3L
,
3L
),
"conv2_weights"
:
(
4L
,
4L
,
3L
,
3L
),
"conv4_weights"
:
(
4L
,
8L
,
3L
,
3L
)
}
for
param
in
main_program
.
global_block
().
all_parameters
():
if
"weights"
in
param
.
name
:
self
.
assertTrue
(
param
.
shape
==
shapes
[
param
.
name
])
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录