diff --git a/demo/auto_compression/detection/README.md b/demo/auto_compression/detection/README.md index e1b262b4a45c85073564ababab2cdaa76a75e08c..5eb0ce9c6e52dd9dc5cbb2b84f32876d9aeb839a 100644 --- a/demo/auto_compression/detection/README.md +++ b/demo/auto_compression/detection/README.md @@ -26,27 +26,7 @@ | PP-YOLOE-l | 量化+蒸馏 | 640*640 | 50.6 | - | - | 6.7ms | [config](https://github.com/PaddlePaddle/PaddleSlim/tree/develop/demo/auto_compression/detection/configs/ppyoloe_l_qat_dis.yaml) | [Model](https://bj.bcebos.com/v1/paddle-slim-models/act/ppyoloe_crn_l_300e_coco_quant.tar) | - mAP的指标均在COCO val2017数据集中评测得到。 -- PP-YOLOE模型在Tesla V100的GPU环境下测试,并且开启TensorRT,测试脚本是[benchmark demo](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/deploy/python) - -### YOLOv5 -| 模型 | 策略 | 输入尺寸 | mAPval
0.5:0.95 | 预测时延FP32
(ms) |预测时延FP16
(ms) | 预测时延INT8
(ms) | 配置文件 | Inference模型 | -| :-------- |:-------- |:--------: | :---------------------: | :----------------: | :----------------: | :---------------: | :-----------------------------: | :-----------------------------: | -| YOLOv5s | Base模型 | 640*640 | 37.4 | 6.0 | 4.9ms | - | - | [Model](https://bj.bcebos.com/v1/paddle-slim-models/detection/yolov5s_infer.tar) | -| YOLOv5s | 量化+蒸馏 | 640*640 | 36.5 | - | - | 4.5ms | [config](https://github.com/PaddlePaddle/PaddleSlim/tree/develop/demo/auto_compression/detection/configs/yolov5s_qat_dis.yaml) | [Model](https://bj.bcebos.com/v1/paddle-slim-models/act/yolov5s_quant.tar) | - -说明: -- mAP的指标均在COCO val2017数据集中评测得到。 -- YOLOv5s模型在Tesla V100的GPU环境下测试,并且开启TensorRT,测试脚本是[benchmark demo](./infer.py) -- YOLOv5模型源自[ultralytics/yolov5](https://github.com/ultralytics/yolov5),通过[X2Paddle](https://github.com/PaddlePaddle/X2Paddle)工具转换YOLOv5预测模型步骤: - -(1) 安装X2Paddle的1.3.6以上版本;(pip install x2paddle) - -(2) 转换模型: -``` -x2paddle --framework=onnx --model=yolov5s.onnx --save_dir=pd_model -cp -r pd_model/inference_model/ yolov5_inference_model -``` -即可得到YOLOv5s模型的预测模型(`model.pdmodel` 和 `model.pdiparams`)。如想快速体验,可直接下载上方表格中YOLOv5s的Base预测模型。 +- PP-YOLOE模型在Tesla V100的GPU环境下测试,并且开启TensorRT,测试脚本是[benchmark demo](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/deploy/python)。 ## 3. 自动压缩流程 diff --git a/demo/auto_compression/pytorch_yolov5/README.md b/demo/auto_compression/pytorch_yolov5/README.md index 1975aa7c6893cb5b08ce995913ab2a458f35afb1..f1b109a6146c61b14ab5eb1a19896f60d1976975 100644 --- a/demo/auto_compression/pytorch_yolov5/README.md +++ b/demo/auto_compression/pytorch_yolov5/README.md @@ -23,11 +23,11 @@ | 模型 | 策略 | 输入尺寸 | mAPval
0.5:0.95 | 预测时延FP32
(ms) |预测时延FP16
(ms) | 预测时延INT8
(ms) | 配置文件 | Inference模型 | | :-------- |:-------- |:--------: | :---------------------: | :----------------: | :----------------: | :---------------: | :-----------------------------: | :-----------------------------: | | YOLOv5s | Base模型 | 640*640 | 37.4 | 7.8ms | 4.3ms | - | - | [Model](https://bj.bcebos.com/v1/paddle-slim-models/detection/yolov5s_infer.tar) | -| YOLOv5s | 量化+蒸馏 | 640*640 | 36.5 | - | - | 3.4ms | [config](https://github.com/PaddlePaddle/PaddleSlim/tree/develop/demo/auto_compression/detection/configs/yolov5s_qat_dis.yaml) | [Model](https://bj.bcebos.com/v1/paddle-slim-models/act/yolov5s_quant.tar) | +| YOLOv5s | 量化+蒸馏 | 640*640 | 36.5 | - | - | 3.4ms | [config](./configs/yolov5s_qat_dis.yaml) | [Model](https://bj.bcebos.com/v1/paddle-slim-models/act/yolov5s_quant.tar) | 说明: - mAP的指标均在COCO val2017数据集中评测得到。 -- YOLOv5s模型在Tesla T4的GPU环境下测试,并且开启TensorRT,测试脚本是[benchmark demo](./paddle_trt_infer.py) +- YOLOv5s模型在Tesla T4的GPU环境下测试,并且开启TensorRT,测试脚本是[benchmark demo](./paddle_trt_infer.py)。 ## 3. 自动压缩流程