Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
e598cb9c
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
大约 2 年 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e598cb9c
编写于
12月 05, 2019
作者:
C
ceci3
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add inception
上级
c5cc8ad1
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
172 addition
and
86 deletion
+172
-86
paddleslim/nas/search_space/inception_block.py
paddleslim/nas/search_space/inception_block.py
+172
-86
未找到文件。
paddleslim/nas/search_space/inception_block.py
浏览文件 @
e598cb9c
...
@@ -23,10 +23,9 @@ from .search_space_base import SearchSpaceBase
...
@@ -23,10 +23,9 @@ from .search_space_base import SearchSpaceBase
from
.base_layer
import
conv_bn_layer
from
.base_layer
import
conv_bn_layer
from
.search_space_registry
import
SEARCHSPACE
from
.search_space_registry
import
SEARCHSPACE
__all__
=
[
__all__
=
[
"InceptionABlockSpace"
,
"InceptionCBlockSpace"
]
"InceptionABlockSpace"
,
"InceptionBBlockSpace"
,
"InceptionCBlockSpace"
]
### TODO add asymmetric kernel of conv when paddle-lite support
### TODO add asymmetric kernel of conv when paddle-lite support
### inceptionB is same as inceptionA if asymmetric kernel is not support
@
SEARCHSPACE
.
register
@
SEARCHSPACE
.
register
...
@@ -45,7 +44,7 @@ class InceptionABlockSpace(SearchSpaceBase):
...
@@ -45,7 +44,7 @@ class InceptionABlockSpace(SearchSpaceBase):
### self.filter_num means filter nums
### self.filter_num means filter nums
self
.
filter_num
=
np
.
array
([
self
.
filter_num
=
np
.
array
([
3
,
4
,
8
,
12
,
16
,
24
,
32
,
48
,
64
,
80
,
96
,
128
,
144
,
160
,
192
,
224
,
3
,
4
,
8
,
12
,
16
,
24
,
32
,
48
,
64
,
80
,
96
,
128
,
144
,
160
,
192
,
224
,
256
,
320
,
384
,
480
,
512
,
1024
256
,
320
,
384
,
4
48
,
4
80
,
512
,
1024
])
])
### self.k_size means kernel_size
### self.k_size means kernel_size
self
.
k_size
=
np
.
array
([
3
,
5
])
self
.
k_size
=
np
.
array
([
3
,
5
])
...
@@ -161,7 +160,7 @@ class InceptionABlockSpace(SearchSpaceBase):
...
@@ -161,7 +160,7 @@ class InceptionABlockSpace(SearchSpaceBase):
input
=
self
.
_inceptionA
(
input
=
self
.
_inceptionA
(
input
,
input
,
layer_setting
[
0
:
7
]
,
A_tokens
=
filter_nums
,
filter_size
=
filter_size
,
filter_size
=
filter_size
,
stride
=
stride
,
stride
=
stride
,
pool_type
=
pool_type
,
pool_type
=
pool_type
,
...
@@ -244,97 +243,184 @@ class InceptionABlockSpace(SearchSpaceBase):
...
@@ -244,97 +243,184 @@ class InceptionABlockSpace(SearchSpaceBase):
[
conv1
,
conv2
,
conv3
,
conv4
],
axis
=
1
,
name
=
name
+
'_concat'
)
[
conv1
,
conv2
,
conv3
,
conv4
],
axis
=
1
,
name
=
name
+
'_concat'
)
return
concat
return
concat
def
_inceptionB
(
self
,
data
,
B_tokens
=
[
0
]
*
7
,
filter_size
,
stride
,
repeat
,
name
=
None
):
pool1
=
fluid
.
layers
.
pool2d
(
input
=
data
,
pool_size
=
filter_size
,
pool_padding
=
'SAME'
,
pool_type
=
'avg'
,
name
=
name
+
'_inceptionB_pool2d'
)
conv1
=
conv_bn_layer
(
input
=
pool1
,
filter_size
=
1
,
num_filters
=
B_tokens
[
0
],
stride
=
stride
,
act
=
'relu'
,
name
=
name
+
'_inceptionB_conv1'
)
conv2
=
conv_bn_layer
(
@
SEARCHSPACE
.
register
input
=
data
,
class
InceptionCBlockSpace
(
SearchSpaceBase
):
filter_size
=
1
,
def
__init__
(
self
,
input_size
,
output_size
,
block_num
,
block_mask
):
num_filters
=
B_tokens
[
1
],
super
(
InceptionABlockSpace
,
self
).
__init__
(
input_size
,
output_size
,
stride
=
stride
,
block_num
,
block_mask
)
act
=
'relu'
,
if
self
.
block_mask
==
None
:
name
=
name
+
'_inceptionB_conv2'
)
# use input_size and output_size to compute self.downsample_num
self
.
downsample_num
=
compute_downsample_num
(
self
.
input_size
,
self
.
output_size
)
if
self
.
block_num
!=
None
:
assert
self
.
downsample_num
<=
self
.
block_num
,
'downsample numeber must be LESS THAN OR EQUAL TO block_num, but NOW: downsample numeber is {}, block_num is {}'
.
format
(
self
.
downsample_num
,
self
.
block_num
)
conv3
=
conv_bn_layer
(
### self.filter_num means filter nums
input
=
data
,
self
.
filter_num
=
np
.
array
([
filter_size
=
1
,
3
,
4
,
8
,
12
,
16
,
24
,
32
,
48
,
64
,
80
,
96
,
128
,
144
,
160
,
192
,
224
,
num_filters
=
B_tokens
[
2
],
256
,
320
,
384
,
448
,
480
,
512
,
1024
stride
=
1
,
])
act
=
'relu'
,
### self.k_size means kernel_size
name
=
name
+
'_inceptionB_conv3_1'
)
self
.
k_size
=
np
.
array
([
3
,
5
])
conv3
=
conv_bn_layer
(
### self.pool_type means pool type, 0 means avg, 1 means max
input
=
conv3
,
self
.
pool_type
=
np
.
array
([
0
,
1
])
filter_size
=
filter_size
,
### self.repeat means repeat of 1x1 conv in branch of inception
num_filters
=
B_tokens
[
3
],
### self.repeat = np.array([0,1])
stride
=
stride
,
act
=
'relu'
,
name
=
name
+
'_inceptionB_conv3_2'
)
conv4
=
conv_bn_layer
(
def
init_tokens
(
self
):
input
=
data
,
"""
filter_size
=
1
,
The initial token.
num_filters
=
B_tokens
[
4
],
"""
stride
=
1
,
if
self
.
block_mask
!=
None
:
act
=
'relu'
,
return
[
0
]
*
(
len
(
self
.
block_mask
)
*
9
)
name
=
name
+
'_inceptionB_conv4_1'
)
else
:
conv4
=
conv_bn_layer
(
return
[
0
]
*
(
self
.
block_num
*
9
)
input
=
conv4
,
filter_size
=
filter_size
,
def
range_table
(
self
):
num_filters
=
B_tokens
[
5
],
"""
stride
=
1
,
Get range table of current search space, constrains the range of tokens.
act
=
'relu'
,
"""
name
=
name
+
'_inceptionB_conv4_2'
)
range_table_base
=
[]
conv4
=
conv_bn_layer
(
if
self
.
block_mask
!=
None
:
input
=
conv4
,
range_table_length
=
len
(
self
.
block_mask
)
else
:
range_table_length
=
self
.
block_mum
for
i
in
range
(
range_table_length
):
range_table_base
.
append
(
len
(
self
.
filter_num
))
range_table_base
.
append
(
len
(
self
.
filter_num
))
range_table_base
.
append
(
len
(
self
.
filter_num
))
range_table_base
.
append
(
len
(
self
.
filter_num
))
range_table_base
.
append
(
len
(
self
.
filter_num
))
range_table_base
.
append
(
len
(
self
.
filter_num
))
range_table_base
.
append
(
len
(
self
.
filter_num
))
range_table_base
.
append
(
len
(
self
.
k_size
))
range_table_base
.
append
(
len
(
self
.
pooltype
))
return
range_table_base
def
token2arch
(
self
,
tokens
=
None
):
"""
return net_arch function
"""
#assert self.block_num
if
tokens
is
None
:
tokens
=
self
.
init_tokens
()
self
.
bottleneck_params_list
=
[]
if
self
.
block_mask
!=
None
:
for
i
in
range
(
len
(
self
.
block_mask
)):
self
.
bottleneck_params_list
.
append
(
(
self
.
filter_num
[
i
*
11
],
self
.
filter_num
[
i
*
11
+
1
],
self
.
filter_num
[
i
*
11
+
2
],
self
.
filter_num
[
i
*
11
+
3
],
self
.
filter_num
[
i
*
11
+
4
],
self
.
filter_num
[
i
*
11
+
5
],
self
.
filter_num
[
i
*
11
+
6
],
self
.
filter_num
[
i
*
11
+
7
],
self
.
filter_num
[
i
*
11
+
8
],
self
.
k_size
[
i
*
11
+
9
],
2
if
self
.
block_mask
==
1
else
1
,
self
.
pool_type
[
i
*
11
+
10
]))
else
:
repeat_num
=
self
.
block_num
/
self
.
downsample_num
num_minus
=
self
.
block_num
%
self
.
downsample_num
### if block_num > downsample_num, add stride=1 block at last (block_num-downsample_num) layers
for
i
in
range
(
self
.
downsample_num
):
self
.
bottleneck_params_list
.
append
(
(
self
.
filter_num
[
i
*
11
],
self
.
filter_num
[
i
*
11
+
1
],
self
.
filter_num
[
i
*
11
+
2
],
self
.
filter_num
[
i
*
11
+
3
],
self
.
filter_num
[
i
*
11
+
4
],
self
.
filter_num
[
i
*
11
+
5
],
self
.
filter_num
[
i
*
11
+
6
],
self
.
filter_num
[
i
*
11
+
7
],
self
.
filter_num
[
i
*
11
+
8
],
self
.
k_size
[
i
*
11
+
9
],
2
,
self
.
pool_type
[
i
*
11
+
10
]))
### if block_num / downsample_num > 1, add (block_num / downsample_num) times stride=1 block
for
k
in
range
(
repeat_num
-
1
):
kk
=
k
*
self
.
downsample_num
+
i
self
.
bottleneck_params_list
.
append
((
self
.
filter_num
[
kk
*
11
],
self
.
filter_num
[
kk
*
11
+
1
],
self
.
filter_num
[
kk
*
11
+
2
],
self
.
filter_num
[
kk
*
11
+
3
],
self
.
filter_num
[
kk
*
11
+
4
],
self
.
filter_num
[
kk
*
11
+
5
],
self
.
filter_num
[
kk
*
11
+
6
],
self
.
filter_num
[
kk
*
11
+
7
],
self
.
filter_num
[
kk
*
11
+
8
],
self
.
k_size
[
kk
*
11
+
9
],
1
,
self
.
pool_type
[
kk
*
11
+
10
]))
if
self
.
downsample_num
-
i
<=
num_minus
:
j
=
self
.
downsample_num
*
repeat_num
+
i
self
.
bottleneck_params_list
.
append
(
(
self
.
filter_num
[
j
*
11
],
self
.
filter_num
[
j
*
11
+
1
],
self
.
filter_num
[
j
*
11
+
2
],
self
.
filter_num
[
j
*
11
+
3
],
self
.
filter_num
[
j
*
11
+
4
],
self
.
filter_num
[
j
*
11
+
5
],
self
.
filter_num
[
j
*
11
+
6
],
self
.
filter_num
[
j
*
11
+
7
],
self
.
filter_num
[
j
*
11
+
8
],
self
.
k_size
[
j
*
11
+
9
],
1
,
self
.
pool_type
[
j
*
11
+
10
]))
if
self
.
downsample_num
==
0
and
self
.
block_num
!=
0
:
for
i
in
range
(
len
(
self
.
block_num
)):
self
.
bottleneck_params_list
.
append
(
(
self
.
filter_num
[
i
*
11
],
self
.
filter_num
[
i
*
11
+
1
],
self
.
filter_num
[
i
*
11
+
2
],
self
.
filter_num
[
i
*
11
+
3
],
self
.
filter_num
[
i
*
11
+
4
],
self
.
filter_num
[
i
*
11
+
5
],
self
.
filter_num
[
i
*
11
+
6
],
self
.
filter_num
[
i
*
11
+
7
],
self
.
filter_num
[
i
*
11
+
8
],
self
.
k_size
[
i
*
11
+
9
],
1
,
self
.
pool_type
[
i
*
11
+
10
]))
def
net_arch
(
input
,
return_mid_layer
=
False
,
return_block
=
[]):
assert
isinstance
(
return_block
,
list
),
'return_block must be a list.'
layer_count
=
0
mid_layer
=
dict
()
for
i
,
layer_setting
in
enumerate
(
self
.
bottleneck_params_list
):
filter_nums
=
layer_setting
[
0
:
9
]
filter_size
=
layer_setting
[
9
]
stride
=
layer_setting
[
10
]
pool_type
=
'avg'
if
layer_setting
[
11
]
==
0
else
'max'
if
stride
==
2
:
layer_count
+=
1
if
(
layer_count
-
1
)
in
return_block
:
mid_layer
[
layer_count
-
1
]
=
input
input
=
self
.
_inceptionC
(
input
,
C_tokens
=
filter_nums
,
filter_size
=
filter_size
,
filter_size
=
filter_size
,
num_filters
=
B_tokens
[
6
],
stride
=
stride
,
stride
=
stride
,
act
=
'relu'
,
pool_type
=
pool_type
,
name
=
name
+
'_inceptionB_conv4_3'
)
name
=
'inceptionC_{}'
.
format
(
i
+
1
))
concat
=
fluid
.
layers
.
concat
(
[
conv1
,
conv2
,
conv3
,
conv4
],
if
return_mid_layer
:
axis
=
1
,
return
input
,
mid_layer
name
=
name
+
'_inceptionB_concat'
)
else
:
return
concat
return
input
return
net_arch
def
_inceptionC
(
self
,
def
_inceptionC
(
self
,
data
,
data
,
C_tokens
=
[
0
]
*
9
,
C_tokens
,
filter_size
,
filter_size
,
stride
,
stride
,
repeat
,
pool_type
,
name
=
None
):
name
=
None
):
pool1
=
fluid
.
layers
.
pool2d
(
pool1
=
fluid
.
layers
.
pool2d
(
input
=
data
,
input
=
data
,
pool_size
=
filter_size
,
pool_size
=
filter_size
,
pool_padding
=
'SAME'
,
pool_padding
=
'SAME'
,
pool_type
=
'avg'
,
pool_type
=
pool_type
,
name
=
name
+
'_
inceptionC_
pool2d'
)
name
=
name
+
'_pool2d'
)
conv1
=
conv_bn_layer
(
conv1
=
conv_bn_layer
(
input
=
pool1
,
input
=
pool1
,
filter_size
=
1
,
filter_size
=
1
,
num_filters
=
C_tokens
[
0
],
num_filters
=
C_tokens
[
0
],
stride
=
stride
,
stride
=
stride
,
act
=
'relu'
,
act
=
'relu'
,
name
=
name
+
'_
inceptionC_
conv1'
)
name
=
name
+
'_conv1'
)
conv2
=
conv_bn_layer
(
conv2
=
conv_bn_layer
(
input
=
data
,
input
=
data
,
...
@@ -342,7 +428,7 @@ class InceptionABlockSpace(SearchSpaceBase):
...
@@ -342,7 +428,7 @@ class InceptionABlockSpace(SearchSpaceBase):
num_filters
=
C_tokens
[
1
],
num_filters
=
C_tokens
[
1
],
stride
=
stride
,
stride
=
stride
,
act
=
'relu'
,
act
=
'relu'
,
name
=
name
+
'_
inceptionC_
conv2'
)
name
=
name
+
'_conv2'
)
conv3
=
conv_bn_layer
(
conv3
=
conv_bn_layer
(
input
=
data
,
input
=
data
,
...
@@ -350,21 +436,21 @@ class InceptionABlockSpace(SearchSpaceBase):
...
@@ -350,21 +436,21 @@ class InceptionABlockSpace(SearchSpaceBase):
num_filters
=
C_tokens
[
2
],
num_filters
=
C_tokens
[
2
],
stride
=
1
,
stride
=
1
,
act
=
'relu'
,
act
=
'relu'
,
name
=
name
+
'_
inceptionC_
conv3_1'
)
name
=
name
+
'_conv3_1'
)
conv3_1
=
conv_bn_layer
(
conv3_1
=
conv_bn_layer
(
input
=
conv3
,
input
=
conv3
,
filter_size
=
filter_size
,
filter_size
=
filter_size
,
num_filters
=
C_tokens
[
3
],
num_filters
=
C_tokens
[
3
],
stride
=
stride
,
stride
=
stride
,
act
=
'relu'
,
act
=
'relu'
,
name
=
name
+
'_
inceptionC_
conv3_2_1'
)
name
=
name
+
'_conv3_2_1'
)
conv3_2
=
conv_bn_layer
(
conv3_2
=
conv_bn_layer
(
input
=
conv3
,
input
=
conv3
,
filter_size
=
filter_size
,
filter_size
=
filter_size
,
num_filters
=
C_tokens
[
4
],
num_filters
=
C_tokens
[
4
],
stride
=
stride
,
stride
=
stride
,
act
=
'relu'
,
act
=
'relu'
,
name
=
name
+
'_
inceptionC_
conv3_2_2'
)
name
=
name
+
'_conv3_2_2'
)
conv4
=
conv_bn_layer
(
conv4
=
conv_bn_layer
(
input
=
data
,
input
=
data
,
...
@@ -372,31 +458,31 @@ class InceptionABlockSpace(SearchSpaceBase):
...
@@ -372,31 +458,31 @@ class InceptionABlockSpace(SearchSpaceBase):
num_filters
=
C_tokens
[
5
],
num_filters
=
C_tokens
[
5
],
stride
=
1
,
stride
=
1
,
act
=
'relu'
,
act
=
'relu'
,
name
=
name
+
'_
inceptionC_
conv4_1'
)
name
=
name
+
'_conv4_1'
)
conv4
=
conv_bn_layer
(
conv4
=
conv_bn_layer
(
input
=
conv4
,
input
=
conv4
,
filter_size
=
filter_size
,
filter_size
=
filter_size
,
num_filters
=
C_tokens
[
6
],
num_filters
=
C_tokens
[
6
],
stride
=
1
,
stride
=
1
,
act
=
'relu'
,
act
=
'relu'
,
name
=
name
+
'_
inceptionC_
conv4_2'
)
name
=
name
+
'_conv4_2'
)
conv4_1
=
conv_bn_layer
(
conv4_1
=
conv_bn_layer
(
input
=
conv4
,
input
=
conv4
,
filter_size
=
filter_size
,
filter_size
=
filter_size
,
num_filters
=
C_tokens
[
7
],
num_filters
=
C_tokens
[
7
],
stride
=
stride
,
stride
=
stride
,
act
=
'relu'
,
act
=
'relu'
,
name
=
name
+
'_
inceptionC_
conv4_3_1'
)
name
=
name
+
'_conv4_3_1'
)
conv4_2
=
conv_bn_layer
(
conv4_2
=
conv_bn_layer
(
input
=
conv4
,
input
=
conv4
,
filter_size
=
filter_size
,
filter_size
=
filter_size
,
num_filters
=
C_tokens
[
8
],
num_filters
=
C_tokens
[
8
],
stride
=
stride
,
stride
=
stride
,
act
=
'relu'
,
act
=
'relu'
,
name
=
name
+
'_
inceptionC_
conv4_3_2'
)
name
=
name
+
'_conv4_3_2'
)
concat
=
fluid
.
layers
.
concat
(
concat
=
fluid
.
layers
.
concat
(
[
conv1
,
conv2
,
conv3_1
,
conv3_2
,
conv4_1
,
conv4_2
],
[
conv1
,
conv2
,
conv3_1
,
conv3_2
,
conv4_1
,
conv4_2
],
axis
=
1
,
axis
=
1
,
name
=
name
+
'_
inceptionC_
concat'
)
name
=
name
+
'_concat'
)
return
concat
return
concat
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录