Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
e1e5f5d1
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
大约 2 年 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e1e5f5d1
编写于
3月 17, 2020
作者:
W
wanghaoshuang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Support for dynamic graph.
上级
bb0f8fbb
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
951 addition
and
5 deletion
+951
-5
paddleslim/core/__init__.py
paddleslim/core/__init__.py
+8
-2
paddleslim/core/dy_graph.py
paddleslim/core/dy_graph.py
+409
-0
paddleslim/prune/dy_prune_walker.py
paddleslim/prune/dy_prune_walker.py
+520
-0
paddleslim/prune/pruner.py
paddleslim/prune/pruner.py
+14
-3
未找到文件。
paddleslim/core/__init__.py
浏览文件 @
e1e5f5d1
...
...
@@ -12,7 +12,13 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
.graph_wrapper
import
GraphWrapper
,
VarWrapper
,
OpWrapper
from
.graph_wrapper
import
GraphWrapper
from
.registry
import
Registry
__all__
=
[
'GraphWrapper'
,
'VarWrapper'
,
'OpWrapper'
,
'Registry'
]
__all__
=
[
'GraphWrapper'
,
'Registry'
]
try
:
from
.dy_graph
import
DyGraph
__all__
+=
[
'DyGraph'
]
except
Exception
as
e
:
pass
paddleslim/core/dy_graph.py
0 → 100644
浏览文件 @
e1e5f5d1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
copy
import
pickle
import
numpy
as
np
from
collections
import
OrderedDict
from
collections
import
Iterable
import
torch
__all__
=
[
'DyGraph'
,
'VarWrapper'
,
'OpWrapper'
]
class
VarWrapper
(
object
):
def
__init__
(
self
,
id
,
is_parameter
=
False
,
tensor
=
None
):
self
.
_id
=
id
self
.
_inputs
=
[]
self
.
_outputs
=
[]
self
.
_is_parameter
=
is_parameter
self
.
_tensor
=
tensor
def
__eq__
(
self
,
v
):
"""
Overwrite this function for ...in... syntax in python.
"""
return
self
.
_id
==
v
.
_id
def
name
(
self
):
"""
Get the name of the variable.
"""
return
self
.
_id
def
__repr__
(
self
):
return
"id: {};"
.
format
(
self
.
_id
)
def
shape
(
self
):
"""
Get the shape of the varibale.
"""
return
self
.
_tensor
.
shape
def
set_shape
(
self
,
shape
):
"""
Set the shape of the variable.
"""
assert
(
"Unimplement"
)
def
inputs
(
self
):
"""
Get all the operators that use this variable as output.
Returns:
list<OpWrapper>: A list of operators.
"""
return
self
.
_inputs
def
outputs
(
self
):
"""
Get all the operators that use this variable as input.
Returns:
list<OpWrapper>: A list of operators.
"""
return
self
.
_outputs
def
is_parameter
(
self
):
return
self
.
_is_parameter
class
OpWrapper
(
object
):
def
__init__
(
self
,
id
,
name
):
self
.
_id
=
id
self
.
name
=
name
self
.
module
=
None
self
.
_inputs
=
[]
self
.
_outputs
=
[]
def
__eq__
(
self
,
op
):
"""
Overwrite this function for ...in... syntax in python.
"""
return
self
.
id
()
==
op
.
id
()
def
all_inputs
(
self
):
"""
Get all the input variables of this operator.
"""
return
self
.
_inputs
def
all_outputs
(
self
):
"""
Get all the output variables of this operator.
"""
return
self
.
_outputs
def
id
(
self
):
"""
Get the id of this operator.
"""
return
self
.
_id
def
type
(
self
):
"""
Get the type of this operator.
"""
if
self
.
module
is
not
None
:
return
self
.
module
.
__class__
.
__name__
else
:
if
self
.
name
.
startswith
(
"aten::"
):
return
self
.
name
.
split
(
":"
)[
-
1
]
def
__repr__
(
self
):
return
"op[id: {}, type: {}; inputs: {}]"
.
format
(
self
.
id
(),
self
.
type
(),
self
.
all_inputs
())
def
is_bwd_op
(
self
):
"""
Whether this operator is backward op.
"""
return
False
def
is_opt_op
(
self
):
"""
Whether this operator is optimizer op.
"""
return
False
def
inputs
(
self
,
name
):
"""
Get all the varibales by the input name.
"""
return
[
self
.
_graph
.
var
(
var_name
)
for
var_name
in
self
.
_op
.
input
(
name
)]
def
outputs
(
self
,
name
):
"""
Get all the varibales by the output name.
"""
return
[
self
.
_graph
.
var
(
var_name
)
for
var_name
in
self
.
_op
.
output
(
name
)
]
def
set_attr
(
self
,
key
,
value
):
"""
Set the value of attribute by attribute's name.
Args:
key(str): the attribute name.
value(bool|int|str|float|list): the value of the attribute.
"""
self
.
_op
.
_set_attr
(
key
,
value
)
def
attr
(
self
,
name
):
"""
Get the attribute by name.
Args:
name(str): the attribute name.
Returns:
bool|int|str|float|list: The attribute value. The return value
can be any valid attribute type.
"""
print
dir
(
self
.
module
)
return
self
.
_op
.
attr
(
name
)
class
DyGraph
(
object
):
"""
It is a wrapper of paddle.fluid.framework.IrGraph with some special functions
for paddle slim framework.
Args:
program(framework.Program): A program with
in_nodes(dict): A dict to indicate the input nodes of the graph.
The key is user-defined and human-readable name.
The value is the name of Variable.
out_nodes(dict): A dict to indicate the input nodes of the graph.
The key is user-defined and human-readable name.
The value is the name of Variable.
"""
def
__init__
(
self
,
module
,
input_shape
):
"""
"""
super
(
DyGraph
,
self
).
__init__
()
self
.
module
=
module
self
.
_graph
=
torch
.
jit
.
trace
(
self
.
module
,
torch
.
rand
(
input_shape
)).
graph
print
self
.
_graph
self
.
children
=
{}
for
name
,
child
in
self
.
module
.
named_children
():
self
.
children
[
name
]
=
child
self
.
id2child
=
{}
for
node
in
self
.
_graph
.
nodes
():
if
"prim::GetAttr"
==
node
.
kind
()
and
"self.1"
==
node
.
inputsAt
(
0
).
debugName
():
# print dir(node)
self
.
id2child
[
node
.
output
().
debugName
()]
=
node
[
"name"
]
print
self
.
id2child
self
.
vars
=
{}
self
.
nodes
=
{}
for
node
in
self
.
_graph
.
nodes
():
if
"prim::CallMethod"
==
node
.
kind
()
and
"forward"
==
node
[
"name"
]:
module_id
=
node
.
inputsAt
(
0
).
debugName
()
node_id
=
node
.
output
().
debugName
()
+
"-"
+
module_id
in_var_id
=
node
.
inputsAt
(
1
).
debugName
()
out_var_id
=
node
.
output
().
debugName
()
if
node_id
not
in
self
.
nodes
:
self
.
nodes
[
node_id
]
=
OpWrapper
(
node_id
,
self
.
id2child
[
module_id
])
self
.
nodes
[
node_id
].
module
=
self
.
children
[
self
.
id2child
[
module_id
]]
for
param_id
,
param
in
self
.
nodes
[
node_id
].
module
.
named_parameters
():
param_id
=
"."
.
join
([
self
.
id2child
[
module_id
],
param_id
])
if
param_id
not
in
self
.
vars
:
self
.
vars
[
param_id
]
=
VarWrapper
(
param_id
,
is_parameter
=
True
,
tensor
=
param
)
self
.
nodes
[
node_id
].
all_inputs
().
append
(
self
.
vars
[
param_id
])
self
.
vars
[
param_id
].
outputs
().
append
(
self
.
nodes
[
node_id
])
if
in_var_id
not
in
self
.
vars
:
self
.
vars
[
in_var_id
]
=
VarWrapper
(
in_var_id
)
if
out_var_id
not
in
self
.
vars
:
self
.
vars
[
out_var_id
]
=
VarWrapper
(
out_var_id
)
self
.
nodes
[
node_id
].
all_inputs
().
append
(
self
.
vars
[
in_var_id
])
self
.
nodes
[
node_id
].
all_outputs
().
append
(
self
.
vars
[
out_var_id
])
self
.
vars
[
in_var_id
].
outputs
().
append
(
self
.
nodes
[
node_id
])
self
.
vars
[
out_var_id
].
inputs
().
append
(
self
.
nodes
[
node_id
])
elif
node
.
kind
().
startswith
(
"aten::"
):
# print dir(node)
node_id
=
node
.
output
().
debugName
()
+
"-"
+
node
.
kind
()
# node_id = node.debugName()
if
node_id
not
in
self
.
nodes
:
self
.
nodes
[
node_id
]
=
OpWrapper
(
node_id
,
node
.
kind
())
# self.nodes[node_id].type = node.kind()
for
input
in
node
.
inputs
():
in_var_id
=
input
.
debugName
()
if
in_var_id
not
in
self
.
vars
:
self
.
vars
[
in_var_id
]
=
VarWrapper
(
in_var_id
)
self
.
vars
[
in_var_id
].
outputs
().
append
(
self
.
nodes
[
node_id
])
self
.
nodes
[
node_id
].
all_inputs
().
append
(
self
.
vars
[
in_var_id
])
for
output
in
node
.
outputs
():
out_var_id
=
output
.
debugName
()
if
out_var_id
not
in
self
.
vars
:
self
.
vars
[
out_var_id
]
=
VarWrapper
(
out_var_id
)
self
.
vars
[
out_var_id
].
inputs
().
append
(
self
.
nodes
[
node_id
])
self
.
nodes
[
node_id
].
all_outputs
().
append
(
self
.
vars
[
out_var_id
])
def
all_parameters
(
self
):
"""
Get all the parameters in this graph.
Returns:
list<VarWrapper>: A list of VarWrapper instances.
"""
params
=
[]
for
var
in
self
.
vars
.
values
():
if
var
.
is_parameter
():
params
.
append
(
var
)
return
params
def
is_parameter
(
self
,
var
):
"""
Whether the given variable is parameter.
Args:
var(VarWrapper): The given varibale.
"""
return
var
.
is_parameter
()
def
ops
(
self
):
"""
Return all operator nodes included in the graph as a set.
"""
return
self
.
nodes
.
values
()
def
vars
(
self
):
"""
Get all the variables.
"""
return
self
.
vars
.
values
()
def
var
(
self
,
name
):
"""
Get the variable by variable name.
"""
return
self
.
vars
[
name
]
def
clone
(
self
,
for_test
=
False
):
"""
Clone a new graph from current graph.
Returns:
(DyGraph): The wrapper of a new graph.
"""
return
DyGraph
(
self
.
program
.
clone
(
for_test
),
copy
.
deepcopy
(
self
.
in_nodes
),
copy
.
deepcopy
(
self
.
out_nodes
))
def
program
(
self
):
"""
Get the program in current wrapper.
"""
return
self
.
program
def
pre_ops
(
self
,
op
):
"""
Get all the previous operators of target operator.
Args:
op(OpWrapper): Target operator.
Returns:
list<OpWrapper>: A list of operators.
"""
ops
=
[]
for
p
in
self
.
ops
():
for
in_var
in
op
.
all_inputs
():
if
in_var
in
p
.
all_outputs
():
ops
.
append
(
p
)
return
ops
def
next_ops
(
self
,
op
):
"""
Get all the next operators of target operator.
Args:
op(OpWrapper): Target operator.
Returns:
list<OpWrapper>: A list of operators.
"""
ops
=
[]
for
p
in
self
.
ops
():
for
out_var
in
op
.
all_outputs
():
if
out_var
in
p
.
all_inputs
():
ops
.
append
(
p
)
return
ops
def
get_param_by_op
(
self
,
op
):
"""
Get the parameters used by target operator.
"""
assert
isinstance
(
op
,
OpWrapper
)
params
=
[]
for
var
in
op
.
all_inputs
():
if
isinstance
(
var
.
_var
,
Parameter
):
params
.
append
(
var
)
assert
len
(
params
)
>
0
return
params
def
numel_params
(
self
):
"""
Get the number of elements in all parameters.
"""
ret
=
0
for
param
in
self
.
all_parameters
():
ret
+=
np
.
product
(
param
.
shape
())
return
ret
def
update_param_shape
(
self
,
scope
):
"""
Update the shape of parameters in the graph according to tensors in scope.
It is used after loading pruned parameters from file.
"""
for
param
in
self
.
all_parameters
():
tensor_shape
=
np
.
array
(
scope
.
find_var
(
param
.
name
()).
get_tensor
()).
shape
param
.
set_shape
(
tensor_shape
)
def
infer_shape
(
self
):
"""
Update the groups of convolution layer according to current filters.
It is used after loading pruned parameters from file.
"""
for
op
in
self
.
ops
():
if
op
.
type
()
!=
'conditional_block'
:
op
.
_op
.
desc
.
infer_shape
(
op
.
_op
.
block
.
desc
)
def
update_groups_of_conv
(
self
):
for
op
in
self
.
ops
():
if
op
.
type
()
==
'depthwise_conv2d'
or
op
.
type
(
)
==
'depthwise_conv2d_grad'
:
op
.
set_attr
(
'groups'
,
op
.
inputs
(
'Filter'
)[
0
].
shape
()[
0
])
paddleslim/prune/dy_prune_walker.py
0 → 100644
浏览文件 @
e1e5f5d1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
logging
import
numpy
as
np
from
paddleslim.core
import
Registry
from
paddleslim.common
import
get_logger
__all__
=
[
"PRUNE_WORKER"
,
"Conv2d"
]
_logger
=
get_logger
(
__name__
,
level
=
logging
.
INFO
)
PRUNE_WORKER
=
Registry
(
'prune_worker'
)
class
PruneWorker
(
object
):
def
__init__
(
self
,
op
,
pruned_params
=
[],
visited
=
{}):
"""
A wrapper of operator used to infer the information of all the related variables.
Args:
op(Operator): The operator to be pruned.
pruned_params(list): The list to store the information of pruning that infered by walker.
visited(dict): The auxiliary dict to record the visited operators and variables. The key is a encoded string of operator id and variable name.
Return: A instance of PruneWalker.
"""
self
.
op
=
op
self
.
pruned_params
=
pruned_params
self
.
visited
=
visited
def
prune
(
self
,
var
,
pruned_axis
,
pruned_idx
):
"""
Infer the shape of variables related with current operator, predecessor and successor.
It will search the graph to find all varibles related with `var` and record the information of pruning.
Args:
var(Variable): The root variable of searching. It can be the input or output of current operator.
pruned_axis(int): The axis to be pruned of root variable.
pruned_idx(int): The indexes to be pruned in `pruned_axis` of root variable.
"""
if
self
.
_visit
(
var
,
pruned_axis
):
self
.
_prune
(
var
,
pruned_axis
,
pruned_idx
)
def
_visit
(
self
,
var
,
pruned_axis
):
key
=
"_"
.
join
([
str
(
self
.
op
.
id
()),
var
.
name
()])
if
pruned_axis
not
in
self
.
visited
:
self
.
visited
[
pruned_axis
]
=
{}
if
key
in
self
.
visited
[
pruned_axis
]:
return
False
else
:
self
.
visited
[
pruned_axis
][
key
]
=
True
return
True
def
_prune
(
self
,
var
,
pruned_axis
,
pruned_idx
):
raise
NotImplementedError
(
'Abstract method.'
)
def
_prune_op
(
self
,
op
,
var
,
pruned_axis
,
pruned_idx
,
visited
=
None
):
if
op
.
type
().
endswith
(
"_grad"
):
return
if
visited
is
not
None
:
self
.
visited
=
visited
cls
=
PRUNE_WORKER
.
get
(
op
.
type
())
assert
cls
is
not
None
,
"The walker of {} is not registered."
.
format
(
op
.
type
())
_logger
.
debug
(
"
\n
from: {}
\n
to: {}
\n
pruned_axis: {}; var: {}"
.
format
(
self
.
op
,
op
,
pruned_axis
,
var
.
name
()))
walker
=
cls
(
op
,
pruned_params
=
self
.
pruned_params
,
visited
=
self
.
visited
)
walker
.
prune
(
var
,
pruned_axis
,
pruned_idx
)
@
PRUNE_WORKER
.
register
class
Conv2d
(
PruneWorker
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
=
{}):
super
(
Conv2d
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
def
_prune
(
self
,
var
,
pruned_axis
,
pruned_idx
):
channel_axis
=
1
print
self
.
op
.
all_inputs
()
if
var
==
self
.
op
.
all_inputs
()[
-
1
]:
# input
assert
pruned_axis
==
channel_axis
,
"The Input of conv2d can only be pruned at channel axis, but got {}; var: {}"
.
format
(
pruned_axis
,
var
.
name
())
filter_var
=
self
.
op
.
all_inputs
()[
0
]
self
.
_visit
(
filter_var
,
1
)
self
.
pruned_params
.
append
((
filter_var
,
1
,
pruned_idx
))
for
op
in
filter_var
.
outputs
():
self
.
_prune_op
(
op
,
filter_var
,
1
,
pruned_idx
)
elif
var
==
self
.
op
.
all_inputs
()[
0
]:
# filter
assert
pruned_axis
in
[
0
,
1
]
self
.
pruned_params
.
append
((
var
,
pruned_axis
,
pruned_idx
))
for
op
in
var
.
outputs
():
self
.
_prune_op
(
op
,
var
,
pruned_axis
,
pruned_idx
)
if
pruned_axis
==
0
:
if
len
(
self
.
op
.
all_inputs
())
>
2
:
# has bias
self
.
pruned_params
.
append
(
(
self
.
op
.
all_inputs
()[
1
],
channel_axis
,
pruned_idx
))
output_var
=
self
.
op
.
all_outputs
()[
0
]
self
.
_visit
(
output_var
,
channel_axis
)
next_ops
=
output_var
.
outputs
()
for
op
in
next_ops
:
self
.
_prune_op
(
op
,
output_var
,
channel_axis
,
pruned_idx
)
elif
pruned_axis
==
1
:
input_var
=
self
.
op
.
all_inputs
()[
-
1
]
self
.
_visit
(
input_var
,
channel_axis
)
pre_ops
=
input_var
.
inputs
()
for
op
in
pre_ops
:
self
.
_prune_op
(
op
,
input_var
,
channel_axis
,
pruned_idx
)
elif
var
in
self
.
op
.
all_outputs
():
assert
pruned_axis
==
channel_axis
,
"pruned_axis: {}; var: {}"
.
format
(
pruned_axis
,
var
.
name
())
filter_var
=
self
.
op
.
all_inputs
()[
0
]
self
.
_visit
(
filter_var
,
0
)
self
.
pruned_params
.
append
((
filter_var
,
0
,
pruned_idx
))
for
op
in
filter_var
.
outputs
():
self
.
_prune_op
(
op
,
filter_var
,
0
,
pruned_idx
)
if
len
(
self
.
op
.
all_inputs
())
>
2
:
self
.
pruned_params
.
append
(
(
self
.
op
.
all_inputs
()[
1
],
channel_axis
,
pruned_idx
))
output_var
=
self
.
op
.
all_outputs
()[
0
]
next_ops
=
output_var
.
outputs
()
for
op
in
next_ops
:
self
.
_prune_op
(
op
,
output_var
,
channel_axis
,
pruned_idx
)
@
PRUNE_WORKER
.
register
class
batch_norm
(
PruneWorker
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
batch_norm
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
def
_prune
(
self
,
var
,
pruned_axis
,
pruned_idx
):
if
(
var
not
in
self
.
op
.
outputs
(
"Y"
))
and
(
var
not
in
self
.
op
.
inputs
(
"X"
)):
return
if
var
in
self
.
op
.
outputs
(
"Y"
):
in_var
=
self
.
op
.
inputs
(
"X"
)[
0
]
self
.
_visit
(
in_var
,
pruned_axis
)
pre_ops
=
in_var
.
inputs
()
for
op
in
pre_ops
:
self
.
_prune_op
(
op
,
in_var
,
pruned_axis
,
pruned_idx
)
for
param
in
[
"Scale"
,
"Bias"
,
"Mean"
,
"Variance"
]:
param_var
=
self
.
op
.
inputs
(
param
)[
0
]
for
op
in
param_var
.
outputs
():
self
.
_prune_op
(
op
,
param_var
,
0
,
pruned_idx
)
self
.
pruned_params
.
append
((
param_var
,
0
,
pruned_idx
))
out_var
=
self
.
op
.
outputs
(
"Y"
)[
0
]
self
.
_visit
(
out_var
,
pruned_axis
)
next_ops
=
out_var
.
outputs
()
for
op
in
next_ops
:
self
.
_prune_op
(
op
,
out_var
,
pruned_axis
,
pruned_idx
)
class
elementwise_op
(
PruneWorker
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
elementwise_op
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
def
_prune
(
self
,
var
,
pruned_axis
,
pruned_idx
):
axis
=
self
.
op
.
attr
(
"axis"
)
if
axis
==
-
1
:
# TODO
axis
=
0
if
var
in
self
.
op
.
outputs
(
"Out"
):
for
name
in
[
"X"
,
"Y"
]:
actual_axis
=
pruned_axis
if
name
==
"Y"
:
actual_axis
=
pruned_axis
-
axis
in_var
=
self
.
op
.
inputs
(
name
)[
0
]
pre_ops
=
in_var
.
inputs
()
for
op
in
pre_ops
:
self
.
_prune_op
(
op
,
in_var
,
actual_axis
,
pruned_idx
)
else
:
if
var
in
self
.
op
.
inputs
(
"X"
):
in_var
=
self
.
op
.
inputs
(
"Y"
)[
0
]
if
in_var
.
is_parameter
():
self
.
pruned_params
.
append
(
(
in_var
,
pruned_axis
-
axis
,
pruned_idx
))
pre_ops
=
in_var
.
inputs
()
for
op
in
pre_ops
:
self
.
_prune_op
(
op
,
in_var
,
pruned_axis
-
axis
,
pruned_idx
)
elif
var
in
self
.
op
.
inputs
(
"Y"
):
in_var
=
self
.
op
.
inputs
(
"X"
)[
0
]
pre_ops
=
in_var
.
inputs
()
pruned_axis
=
pruned_axis
+
axis
for
op
in
pre_ops
:
self
.
_prune_op
(
op
,
in_var
,
pruned_axis
,
pruned_idx
)
out_var
=
self
.
op
.
outputs
(
"Out"
)[
0
]
self
.
_visit
(
out_var
,
pruned_axis
)
next_ops
=
out_var
.
outputs
()
for
op
in
next_ops
:
self
.
_prune_op
(
op
,
out_var
,
pruned_axis
,
pruned_idx
)
@
PRUNE_WORKER
.
register
class
elementwise_add
(
elementwise_op
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
elementwise_add
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
@
PRUNE_WORKER
.
register
class
elementwise_sub
(
elementwise_op
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
elementwise_sub
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
@
PRUNE_WORKER
.
register
class
elementwise_mul
(
elementwise_op
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
elementwise_mul
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
class
activation
(
PruneWorker
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
activation
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
def
_prune
(
self
,
var
,
pruned_axis
,
pruned_idx
):
if
var
in
self
.
op
.
all_outputs
():
in_var
=
self
.
op
.
all_inputs
()[
0
]
for
op
in
in_var
.
inputs
():
self
.
_prune_op
(
op
,
in_var
,
pruned_axis
,
pruned_idx
)
out_var
=
self
.
op
.
all_outputs
()[
0
]
self
.
_visit
(
out_var
,
pruned_axis
)
next_ops
=
out_var
.
outputs
()
for
op
in
next_ops
:
self
.
_prune_op
(
op
,
out_var
,
pruned_axis
,
pruned_idx
)
@
PRUNE_WORKER
.
register
class
uniform_random_batch_size_like
(
activation
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
uniform_random_batch_size_like
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
self
.
input_name
=
"Input"
self
.
output_name
=
"Out"
@
PRUNE_WORKER
.
register
class
bilinear_interp
(
activation
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
bilinear_interp
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
@
PRUNE_WORKER
.
register
class
nearest_interp
(
activation
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
nearest_interp
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
@
PRUNE_WORKER
.
register
class
relu
(
activation
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
relu
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
@
PRUNE_WORKER
.
register
class
leaky_relu
(
activation
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
leaky_relu
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
@
PRUNE_WORKER
.
register
class
floor
(
activation
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
floor
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
@
PRUNE_WORKER
.
register
class
relu6
(
activation
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
relu6
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
@
PRUNE_WORKER
.
register
class
MaxPool2d
(
activation
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
MaxPool2d
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
@
PRUNE_WORKER
.
register
class
sum
(
PruneWorker
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
sum
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
def
_prune
(
self
,
var
,
pruned_axis
,
pruned_idx
):
if
var
in
self
.
op
.
outputs
(
"Out"
):
for
in_var
in
self
.
op
.
inputs
(
"X"
):
pre_ops
=
in_var
.
inputs
()
for
op
in
pre_ops
:
self
.
_prune_op
(
op
,
in_var
,
pruned_axis
,
pruned_idx
)
elif
var
in
self
.
op
.
inputs
(
"X"
):
for
in_var
in
self
.
op
.
inputs
(
"X"
):
if
in_var
!=
var
:
pre_ops
=
in_var
.
inputs
()
for
op
in
pre_ops
:
self
.
_prune_op
(
op
,
in_var
,
pruned_axis
,
pruned_idx
)
out_var
=
self
.
op
.
outputs
(
"Out"
)[
0
]
self
.
_visit
(
out_var
,
pruned_axis
)
next_ops
=
out_var
.
outputs
()
for
op
in
next_ops
:
self
.
_prune_op
(
op
,
out_var
,
pruned_axis
,
pruned_idx
)
@
PRUNE_WORKER
.
register
class
concat
(
PruneWorker
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
concat
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
def
_prune
(
self
,
var
,
pruned_axis
,
pruned_idx
):
idx
=
[]
axis
=
self
.
op
.
attr
(
"axis"
)
if
var
in
self
.
op
.
outputs
(
"Out"
):
start
=
0
if
axis
==
pruned_axis
:
for
_
,
in_var
in
enumerate
(
self
.
op
.
inputs
(
"X"
)):
idx
=
[]
for
i
in
pruned_idx
:
r_idx
=
i
-
start
if
r_idx
<
in_var
.
shape
()[
pruned_axis
]
and
r_idx
>=
0
:
idx
.
append
(
r_idx
)
start
+=
in_var
.
shape
()[
pruned_axis
]
pre_ops
=
in_var
.
inputs
()
for
op
in
pre_ops
:
self
.
_prune_op
(
op
,
in_var
,
pruned_axis
,
idx
)
idx
=
pruned_idx
[:]
else
:
for
_
,
in_var
in
enumerate
(
self
.
op
.
inputs
(
"X"
)):
pre_ops
=
in_var
.
inputs
()
for
op
in
pre_ops
:
self
.
_prune_op
(
op
,
in_var
,
pruned_axis
,
pruned_idx
)
elif
var
in
self
.
op
.
inputs
(
"X"
):
if
axis
==
pruned_axis
:
idx
=
[]
start
=
0
for
v
in
self
.
op
.
inputs
(
"X"
):
if
v
.
name
()
==
var
.
name
():
idx
=
[
i
+
start
for
i
in
pruned_idx
]
else
:
start
+=
v
.
shape
()[
pruned_axis
]
out_var
=
self
.
op
.
outputs
(
"Out"
)[
0
]
self
.
_visit
(
out_var
,
pruned_axis
)
next_ops
=
out_var
.
outputs
()
for
op
in
next_ops
:
self
.
_prune_op
(
op
,
out_var
,
pruned_axis
,
idx
,
visited
=
{})
else
:
for
v
in
self
.
op
.
inputs
(
"X"
):
for
op
in
v
.
inputs
():
self
.
_prune_op
(
op
,
v
,
pruned_axis
,
pruned_idx
)
out_var
=
self
.
op
.
outputs
(
"Out"
)[
0
]
self
.
_visit
(
out_var
,
pruned_axis
)
next_ops
=
out_var
.
outputs
()
for
op
in
next_ops
:
self
.
_prune_op
(
op
,
out_var
,
pruned_axis
,
pruned_idx
)
@
PRUNE_WORKER
.
register
class
depthwise_conv2d
(
PruneWorker
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
=
{}):
super
(
depthwise_conv2d
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
def
_prune
(
self
,
var
,
pruned_axis
,
pruned_idx
):
data_format
=
self
.
op
.
attr
(
"data_format"
)
channel_axis
=
1
if
data_format
==
"NHWC"
:
channel_axis
=
3
if
var
in
self
.
op
.
inputs
(
"Input"
):
assert
pruned_axis
==
channel_axis
,
"The Input of conv2d can only be pruned at channel axis, but got {}"
.
format
(
pruned_axis
)
filter_var
=
self
.
op
.
inputs
(
"Filter"
)[
0
]
self
.
pruned_params
.
append
((
filter_var
,
0
,
pruned_idx
))
self
.
_visit
(
filter_var
,
0
)
new_groups
=
filter_var
.
shape
()[
0
]
-
len
(
pruned_idx
)
self
.
op
.
set_attr
(
"groups"
,
new_groups
)
for
op
in
filter_var
.
outputs
():
self
.
_prune_op
(
op
,
filter_var
,
0
,
pruned_idx
)
output_var
=
self
.
op
.
outputs
(
"Output"
)[
0
]
next_ops
=
output_var
.
outputs
()
for
op
in
next_ops
:
self
.
_prune_op
(
op
,
output_var
,
channel_axis
,
pruned_idx
)
elif
var
in
self
.
op
.
inputs
(
"Filter"
):
assert
pruned_axis
in
[
0
]
if
pruned_axis
==
0
:
if
len
(
self
.
op
.
inputs
(
"Bias"
))
>
0
:
self
.
pruned_params
.
append
(
(
self
.
op
.
inputs
(
"Bias"
),
channel_axis
,
pruned_idx
))
self
.
pruned_params
.
append
((
var
,
0
,
pruned_idx
))
new_groups
=
var
.
shape
()[
0
]
-
len
(
pruned_idx
)
self
.
op
.
set_attr
(
"groups"
,
new_groups
)
for
op
in
var
.
outputs
():
self
.
_prune_op
(
op
,
var
,
0
,
pruned_idx
)
output_var
=
self
.
op
.
outputs
(
"Output"
)[
0
]
self
.
_visit
(
output_var
,
channel_axis
)
next_ops
=
output_var
.
outputs
()
for
op
in
next_ops
:
self
.
_prune_op
(
op
,
output_var
,
channel_axis
,
pruned_idx
)
for
op
in
var
.
outputs
():
self
.
_prune_op
(
op
,
var
,
pruned_axis
,
pruned_idx
)
elif
var
in
self
.
op
.
outputs
(
"Output"
):
assert
pruned_axis
==
channel_axis
filter_var
=
self
.
op
.
inputs
(
"Filter"
)[
0
]
self
.
pruned_params
.
append
((
filter_var
,
0
,
pruned_idx
))
self
.
_visit
(
filter_var
,
0
)
new_groups
=
filter_var
.
shape
()[
0
]
-
len
(
pruned_idx
)
op
.
set_attr
(
"groups"
,
new_groups
)
for
op
in
filter_var
.
outputs
():
self
.
_prune_op
(
op
,
filter_var
,
0
,
pruned_idx
)
if
len
(
self
.
op
.
inputs
(
"Bias"
))
>
0
:
self
.
pruned_params
.
append
(
(
self
.
op
.
inputs
(
"Bias"
)[
0
],
channel_axis
,
pruned_idx
))
in_var
=
self
.
op
.
inputs
(
"Input"
)[
0
]
self
.
_visit
(
in_var
,
channel_axis
)
pre_ops
=
in_var
.
inputs
()
for
op
in
pre_ops
:
self
.
_prune_op
(
op
,
in_var
,
channel_axis
,
pruned_idx
)
output_var
=
self
.
op
.
outputs
(
"Output"
)[
0
]
next_ops
=
output_var
.
outputs
()
for
op
in
next_ops
:
self
.
_prune_op
(
op
,
output_var
,
channel_axis
,
pruned_idx
)
@
PRUNE_WORKER
.
register
class
mul
(
PruneWorker
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
=
{}):
super
(
mul
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
def
_prune
(
self
,
var
,
pruned_axis
,
pruned_idx
):
if
var
in
self
.
op
.
inputs
(
"X"
):
assert
pruned_axis
==
1
,
"The Input of conv2d can only be pruned at axis 1, but got {}"
.
format
(
pruned_axis
)
idx
=
[]
feature_map_size
=
var
.
shape
()[
2
]
*
var
.
shape
()[
3
]
range_idx
=
np
.
array
(
range
(
feature_map_size
))
for
i
in
pruned_idx
:
idx
+=
list
(
range_idx
+
i
*
feature_map_size
)
param_var
=
self
.
op
.
inputs
(
"Y"
)[
0
]
self
.
pruned_params
.
append
((
param_var
,
0
,
idx
))
for
op
in
param_var
.
outputs
():
self
.
_prune_op
(
op
,
param_var
,
0
,
pruned_idx
)
@
PRUNE_WORKER
.
register
class
scale
(
PruneWorker
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
=
{}):
super
(
scale
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
def
_prune
(
self
,
var
,
pruned_axis
,
pruned_idx
):
if
var
in
self
.
op
.
inputs
(
"X"
):
out_var
=
self
.
op
.
outputs
(
"Out"
)[
0
]
for
op
in
out_var
.
outputs
():
self
.
_prune_op
(
op
,
out_var
,
pruned_axis
,
pruned_idx
)
elif
var
in
self
.
op
.
outputs
(
"Out"
):
in_var
=
self
.
op
.
inputs
(
"X"
)[
0
]
for
op
in
in_var
.
inputs
():
self
.
_prune_op
(
op
,
in_var
,
pruned_axis
,
pruned_idx
)
@
PRUNE_WORKER
.
register
class
momentum
(
PruneWorker
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
=
{}):
super
(
momentum
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
def
_prune
(
self
,
var
,
pruned_axis
,
pruned_idx
):
if
var
in
self
.
op
.
inputs
(
"Param"
):
_logger
.
debug
(
"pruning momentum, var:{}"
.
format
(
var
.
name
()))
velocity_var
=
self
.
op
.
inputs
(
"Velocity"
)[
0
]
self
.
pruned_params
.
append
((
velocity_var
,
pruned_axis
,
pruned_idx
))
@
PRUNE_WORKER
.
register
class
adam
(
PruneWorker
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
=
{}):
super
(
adam
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
def
_prune
(
self
,
var
,
pruned_axis
,
pruned_idx
):
if
var
in
self
.
op
.
inputs
(
"Param"
):
_logger
.
debug
(
"pruning momentum, var:{}"
.
format
(
var
.
name
()))
moment1_var
=
self
.
op
.
inputs
(
"Moment1"
)[
0
]
self
.
pruned_params
.
append
((
moment1_var
,
pruned_axis
,
pruned_idx
))
moment2_var
=
self
.
op
.
inputs
(
"Moment2"
)[
0
]
self
.
pruned_params
.
append
((
moment2_var
,
pruned_axis
,
pruned_idx
))
paddleslim/prune/pruner.py
浏览文件 @
e1e5f5d1
...
...
@@ -17,8 +17,13 @@ import sys
import
numpy
as
np
import
paddle.fluid
as
fluid
import
copy
from
..core
import
VarWrapper
,
OpWrapper
,
GraphWrapper
from
..core
import
GraphWrapper
try
:
from
..core
import
DyGraph
except
Exception
as
e
:
pass
from
.prune_walker
import
conv2d
as
conv2d_walker
from
.dy_prune_walker
import
Conv2d
as
dy_conv2d_walker
from
..common
import
get_logger
__all__
=
[
"Pruner"
]
...
...
@@ -38,7 +43,7 @@ class Pruner():
self
.
criterion
=
criterion
def
prune
(
self
,
program
,
graph
,
scope
,
params
,
ratios
,
...
...
@@ -68,7 +73,13 @@ class Pruner():
"""
self
.
pruned_list
=
[]
graph
=
GraphWrapper
(
program
.
clone
())
if
isinstance
(
graph
,
fluid
.
Program
):
graph
=
GraphWrapper
(
program
.
clone
())
elif
isinstance
(
graph
,
torch
.
nn
.
Module
):
graph
=
DyGraph
(
graph
)
conv2d_walker
=
dy_conv2d_walker
else
:
raise
NotImplementedError
(
'The type of graph is not supported.'
)
param_backup
=
{}
if
param_backup
else
None
param_shape_backup
=
{}
if
param_shape_backup
else
None
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录