提交 e1e5f5d1 编写于 作者: W wanghaoshuang

Support for dynamic graph.

上级 bb0f8fbb
...@@ -12,7 +12,13 @@ ...@@ -12,7 +12,13 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from .graph_wrapper import GraphWrapper, VarWrapper, OpWrapper from .graph_wrapper import GraphWrapper
from .registry import Registry from .registry import Registry
__all__ = ['GraphWrapper', 'VarWrapper', 'OpWrapper', 'Registry'] __all__ = ['GraphWrapper', 'Registry']
try:
from .dy_graph import DyGraph
__all__ += ['DyGraph']
except Exception as e:
pass
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import copy
import pickle
import numpy as np
from collections import OrderedDict
from collections import Iterable
import torch
__all__ = ['DyGraph', 'VarWrapper', 'OpWrapper']
class VarWrapper(object):
def __init__(self, id, is_parameter=False, tensor=None):
self._id = id
self._inputs = []
self._outputs = []
self._is_parameter = is_parameter
self._tensor = tensor
def __eq__(self, v):
"""
Overwrite this function for ...in... syntax in python.
"""
return self._id == v._id
def name(self):
"""
Get the name of the variable.
"""
return self._id
def __repr__(self):
return "id: {};".format(self._id)
def shape(self):
"""
Get the shape of the varibale.
"""
return self._tensor.shape
def set_shape(self, shape):
"""
Set the shape of the variable.
"""
assert ("Unimplement")
def inputs(self):
"""
Get all the operators that use this variable as output.
Returns:
list<OpWrapper>: A list of operators.
"""
return self._inputs
def outputs(self):
"""
Get all the operators that use this variable as input.
Returns:
list<OpWrapper>: A list of operators.
"""
return self._outputs
def is_parameter(self):
return self._is_parameter
class OpWrapper(object):
def __init__(self, id, name):
self._id = id
self.name = name
self.module = None
self._inputs = []
self._outputs = []
def __eq__(self, op):
"""
Overwrite this function for ...in... syntax in python.
"""
return self.id() == op.id()
def all_inputs(self):
"""
Get all the input variables of this operator.
"""
return self._inputs
def all_outputs(self):
"""
Get all the output variables of this operator.
"""
return self._outputs
def id(self):
"""
Get the id of this operator.
"""
return self._id
def type(self):
"""
Get the type of this operator.
"""
if self.module is not None:
return self.module.__class__.__name__
else:
if self.name.startswith("aten::"):
return self.name.split(":")[-1]
def __repr__(self):
return "op[id: {}, type: {}; inputs: {}]".format(self.id(),
self.type(),
self.all_inputs())
def is_bwd_op(self):
"""
Whether this operator is backward op.
"""
return False
def is_opt_op(self):
"""
Whether this operator is optimizer op.
"""
return False
def inputs(self, name):
"""
Get all the varibales by the input name.
"""
return [self._graph.var(var_name) for var_name in self._op.input(name)]
def outputs(self, name):
"""
Get all the varibales by the output name.
"""
return [
self._graph.var(var_name) for var_name in self._op.output(name)
]
def set_attr(self, key, value):
"""
Set the value of attribute by attribute's name.
Args:
key(str): the attribute name.
value(bool|int|str|float|list): the value of the attribute.
"""
self._op._set_attr(key, value)
def attr(self, name):
"""
Get the attribute by name.
Args:
name(str): the attribute name.
Returns:
bool|int|str|float|list: The attribute value. The return value
can be any valid attribute type.
"""
print dir(self.module)
return self._op.attr(name)
class DyGraph(object):
"""
It is a wrapper of paddle.fluid.framework.IrGraph with some special functions
for paddle slim framework.
Args:
program(framework.Program): A program with
in_nodes(dict): A dict to indicate the input nodes of the graph.
The key is user-defined and human-readable name.
The value is the name of Variable.
out_nodes(dict): A dict to indicate the input nodes of the graph.
The key is user-defined and human-readable name.
The value is the name of Variable.
"""
def __init__(self, module, input_shape):
"""
"""
super(DyGraph, self).__init__()
self.module = module
self._graph = torch.jit.trace(self.module,
torch.rand(input_shape)).graph
print self._graph
self.children = {}
for name, child in self.module.named_children():
self.children[name] = child
self.id2child = {}
for node in self._graph.nodes():
if "prim::GetAttr" == node.kind() and "self.1" == node.inputsAt(
0).debugName():
# print dir(node)
self.id2child[node.output().debugName()] = node["name"]
print self.id2child
self.vars = {}
self.nodes = {}
for node in self._graph.nodes():
if "prim::CallMethod" == node.kind() and "forward" == node["name"]:
module_id = node.inputsAt(0).debugName()
node_id = node.output().debugName() + "-" + module_id
in_var_id = node.inputsAt(1).debugName()
out_var_id = node.output().debugName()
if node_id not in self.nodes:
self.nodes[node_id] = OpWrapper(node_id,
self.id2child[module_id])
self.nodes[node_id].module = self.children[self.id2child[
module_id]]
for param_id, param in self.nodes[
node_id].module.named_parameters():
param_id = ".".join([self.id2child[module_id], param_id])
if param_id not in self.vars:
self.vars[param_id] = VarWrapper(
param_id, is_parameter=True, tensor=param)
self.nodes[node_id].all_inputs().append(self.vars[
param_id])
self.vars[param_id].outputs().append(self.nodes[
node_id])
if in_var_id not in self.vars:
self.vars[in_var_id] = VarWrapper(in_var_id)
if out_var_id not in self.vars:
self.vars[out_var_id] = VarWrapper(out_var_id)
self.nodes[node_id].all_inputs().append(self.vars[in_var_id])
self.nodes[node_id].all_outputs().append(self.vars[out_var_id])
self.vars[in_var_id].outputs().append(self.nodes[node_id])
self.vars[out_var_id].inputs().append(self.nodes[node_id])
elif node.kind().startswith("aten::"):
# print dir(node)
node_id = node.output().debugName() + "-" + node.kind()
# node_id = node.debugName()
if node_id not in self.nodes:
self.nodes[node_id] = OpWrapper(node_id, node.kind())
# self.nodes[node_id].type = node.kind()
for input in node.inputs():
in_var_id = input.debugName()
if in_var_id not in self.vars:
self.vars[in_var_id] = VarWrapper(in_var_id)
self.vars[in_var_id].outputs().append(self.nodes[node_id])
self.nodes[node_id].all_inputs().append(self.vars[
in_var_id])
for output in node.outputs():
out_var_id = output.debugName()
if out_var_id not in self.vars:
self.vars[out_var_id] = VarWrapper(out_var_id)
self.vars[out_var_id].inputs().append(self.nodes[node_id])
self.nodes[node_id].all_outputs().append(self.vars[
out_var_id])
def all_parameters(self):
"""
Get all the parameters in this graph.
Returns:
list<VarWrapper>: A list of VarWrapper instances.
"""
params = []
for var in self.vars.values():
if var.is_parameter():
params.append(var)
return params
def is_parameter(self, var):
"""
Whether the given variable is parameter.
Args:
var(VarWrapper): The given varibale.
"""
return var.is_parameter()
def ops(self):
"""
Return all operator nodes included in the graph as a set.
"""
return self.nodes.values()
def vars(self):
"""
Get all the variables.
"""
return self.vars.values()
def var(self, name):
"""
Get the variable by variable name.
"""
return self.vars[name]
def clone(self, for_test=False):
"""
Clone a new graph from current graph.
Returns:
(DyGraph): The wrapper of a new graph.
"""
return DyGraph(
self.program.clone(for_test),
copy.deepcopy(self.in_nodes), copy.deepcopy(self.out_nodes))
def program(self):
"""
Get the program in current wrapper.
"""
return self.program
def pre_ops(self, op):
"""
Get all the previous operators of target operator.
Args:
op(OpWrapper): Target operator.
Returns:
list<OpWrapper>: A list of operators.
"""
ops = []
for p in self.ops():
for in_var in op.all_inputs():
if in_var in p.all_outputs():
ops.append(p)
return ops
def next_ops(self, op):
"""
Get all the next operators of target operator.
Args:
op(OpWrapper): Target operator.
Returns:
list<OpWrapper>: A list of operators.
"""
ops = []
for p in self.ops():
for out_var in op.all_outputs():
if out_var in p.all_inputs():
ops.append(p)
return ops
def get_param_by_op(self, op):
"""
Get the parameters used by target operator.
"""
assert isinstance(op, OpWrapper)
params = []
for var in op.all_inputs():
if isinstance(var._var, Parameter):
params.append(var)
assert len(params) > 0
return params
def numel_params(self):
"""
Get the number of elements in all parameters.
"""
ret = 0
for param in self.all_parameters():
ret += np.product(param.shape())
return ret
def update_param_shape(self, scope):
"""
Update the shape of parameters in the graph according to tensors in scope.
It is used after loading pruned parameters from file.
"""
for param in self.all_parameters():
tensor_shape = np.array(
scope.find_var(param.name()).get_tensor()).shape
param.set_shape(tensor_shape)
def infer_shape(self):
"""
Update the groups of convolution layer according to current filters.
It is used after loading pruned parameters from file.
"""
for op in self.ops():
if op.type() != 'conditional_block':
op._op.desc.infer_shape(op._op.block.desc)
def update_groups_of_conv(self):
for op in self.ops():
if op.type() == 'depthwise_conv2d' or op.type(
) == 'depthwise_conv2d_grad':
op.set_attr('groups', op.inputs('Filter')[0].shape()[0])
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import numpy as np
from paddleslim.core import Registry
from paddleslim.common import get_logger
__all__ = ["PRUNE_WORKER", "Conv2d"]
_logger = get_logger(__name__, level=logging.INFO)
PRUNE_WORKER = Registry('prune_worker')
class PruneWorker(object):
def __init__(self, op, pruned_params=[], visited={}):
"""
A wrapper of operator used to infer the information of all the related variables.
Args:
op(Operator): The operator to be pruned.
pruned_params(list): The list to store the information of pruning that infered by walker.
visited(dict): The auxiliary dict to record the visited operators and variables. The key is a encoded string of operator id and variable name.
Return: A instance of PruneWalker.
"""
self.op = op
self.pruned_params = pruned_params
self.visited = visited
def prune(self, var, pruned_axis, pruned_idx):
"""
Infer the shape of variables related with current operator, predecessor and successor.
It will search the graph to find all varibles related with `var` and record the information of pruning.
Args:
var(Variable): The root variable of searching. It can be the input or output of current operator.
pruned_axis(int): The axis to be pruned of root variable.
pruned_idx(int): The indexes to be pruned in `pruned_axis` of root variable.
"""
if self._visit(var, pruned_axis):
self._prune(var, pruned_axis, pruned_idx)
def _visit(self, var, pruned_axis):
key = "_".join([str(self.op.id()), var.name()])
if pruned_axis not in self.visited:
self.visited[pruned_axis] = {}
if key in self.visited[pruned_axis]:
return False
else:
self.visited[pruned_axis][key] = True
return True
def _prune(self, var, pruned_axis, pruned_idx):
raise NotImplementedError('Abstract method.')
def _prune_op(self, op, var, pruned_axis, pruned_idx, visited=None):
if op.type().endswith("_grad"):
return
if visited is not None:
self.visited = visited
cls = PRUNE_WORKER.get(op.type())
assert cls is not None, "The walker of {} is not registered.".format(
op.type())
_logger.debug("\nfrom: {}\nto: {}\npruned_axis: {}; var: {}".format(
self.op, op, pruned_axis, var.name()))
walker = cls(op,
pruned_params=self.pruned_params,
visited=self.visited)
walker.prune(var, pruned_axis, pruned_idx)
@PRUNE_WORKER.register
class Conv2d(PruneWorker):
def __init__(self, op, pruned_params, visited={}):
super(Conv2d, self).__init__(op, pruned_params, visited)
def _prune(self, var, pruned_axis, pruned_idx):
channel_axis = 1
print self.op.all_inputs()
if var == self.op.all_inputs()[-1]: # input
assert pruned_axis == channel_axis, "The Input of conv2d can only be pruned at channel axis, but got {}; var: {}".format(
pruned_axis, var.name())
filter_var = self.op.all_inputs()[0]
self._visit(filter_var, 1)
self.pruned_params.append((filter_var, 1, pruned_idx))
for op in filter_var.outputs():
self._prune_op(op, filter_var, 1, pruned_idx)
elif var == self.op.all_inputs()[0]: # filter
assert pruned_axis in [0, 1]
self.pruned_params.append((var, pruned_axis, pruned_idx))
for op in var.outputs():
self._prune_op(op, var, pruned_axis, pruned_idx)
if pruned_axis == 0:
if len(self.op.all_inputs()) > 2: # has bias
self.pruned_params.append(
(self.op.all_inputs()[1], channel_axis, pruned_idx))
output_var = self.op.all_outputs()[0]
self._visit(output_var, channel_axis)
next_ops = output_var.outputs()
for op in next_ops:
self._prune_op(op, output_var, channel_axis, pruned_idx)
elif pruned_axis == 1:
input_var = self.op.all_inputs()[-1]
self._visit(input_var, channel_axis)
pre_ops = input_var.inputs()
for op in pre_ops:
self._prune_op(op, input_var, channel_axis, pruned_idx)
elif var in self.op.all_outputs():
assert pruned_axis == channel_axis, "pruned_axis: {}; var: {}".format(
pruned_axis, var.name())
filter_var = self.op.all_inputs()[0]
self._visit(filter_var, 0)
self.pruned_params.append((filter_var, 0, pruned_idx))
for op in filter_var.outputs():
self._prune_op(op, filter_var, 0, pruned_idx)
if len(self.op.all_inputs()) > 2:
self.pruned_params.append(
(self.op.all_inputs()[1], channel_axis, pruned_idx))
output_var = self.op.all_outputs()[0]
next_ops = output_var.outputs()
for op in next_ops:
self._prune_op(op, output_var, channel_axis, pruned_idx)
@PRUNE_WORKER.register
class batch_norm(PruneWorker):
def __init__(self, op, pruned_params, visited):
super(batch_norm, self).__init__(op, pruned_params, visited)
def _prune(self, var, pruned_axis, pruned_idx):
if (var not in self.op.outputs("Y")) and (
var not in self.op.inputs("X")):
return
if var in self.op.outputs("Y"):
in_var = self.op.inputs("X")[0]
self._visit(in_var, pruned_axis)
pre_ops = in_var.inputs()
for op in pre_ops:
self._prune_op(op, in_var, pruned_axis, pruned_idx)
for param in ["Scale", "Bias", "Mean", "Variance"]:
param_var = self.op.inputs(param)[0]
for op in param_var.outputs():
self._prune_op(op, param_var, 0, pruned_idx)
self.pruned_params.append((param_var, 0, pruned_idx))
out_var = self.op.outputs("Y")[0]
self._visit(out_var, pruned_axis)
next_ops = out_var.outputs()
for op in next_ops:
self._prune_op(op, out_var, pruned_axis, pruned_idx)
class elementwise_op(PruneWorker):
def __init__(self, op, pruned_params, visited):
super(elementwise_op, self).__init__(op, pruned_params, visited)
def _prune(self, var, pruned_axis, pruned_idx):
axis = self.op.attr("axis")
if axis == -1: # TODO
axis = 0
if var in self.op.outputs("Out"):
for name in ["X", "Y"]:
actual_axis = pruned_axis
if name == "Y":
actual_axis = pruned_axis - axis
in_var = self.op.inputs(name)[0]
pre_ops = in_var.inputs()
for op in pre_ops:
self._prune_op(op, in_var, actual_axis, pruned_idx)
else:
if var in self.op.inputs("X"):
in_var = self.op.inputs("Y")[0]
if in_var.is_parameter():
self.pruned_params.append(
(in_var, pruned_axis - axis, pruned_idx))
pre_ops = in_var.inputs()
for op in pre_ops:
self._prune_op(op, in_var, pruned_axis - axis, pruned_idx)
elif var in self.op.inputs("Y"):
in_var = self.op.inputs("X")[0]
pre_ops = in_var.inputs()
pruned_axis = pruned_axis + axis
for op in pre_ops:
self._prune_op(op, in_var, pruned_axis, pruned_idx)
out_var = self.op.outputs("Out")[0]
self._visit(out_var, pruned_axis)
next_ops = out_var.outputs()
for op in next_ops:
self._prune_op(op, out_var, pruned_axis, pruned_idx)
@PRUNE_WORKER.register
class elementwise_add(elementwise_op):
def __init__(self, op, pruned_params, visited):
super(elementwise_add, self).__init__(op, pruned_params, visited)
@PRUNE_WORKER.register
class elementwise_sub(elementwise_op):
def __init__(self, op, pruned_params, visited):
super(elementwise_sub, self).__init__(op, pruned_params, visited)
@PRUNE_WORKER.register
class elementwise_mul(elementwise_op):
def __init__(self, op, pruned_params, visited):
super(elementwise_mul, self).__init__(op, pruned_params, visited)
class activation(PruneWorker):
def __init__(self, op, pruned_params, visited):
super(activation, self).__init__(op, pruned_params, visited)
def _prune(self, var, pruned_axis, pruned_idx):
if var in self.op.all_outputs():
in_var = self.op.all_inputs()[0]
for op in in_var.inputs():
self._prune_op(op, in_var, pruned_axis, pruned_idx)
out_var = self.op.all_outputs()[0]
self._visit(out_var, pruned_axis)
next_ops = out_var.outputs()
for op in next_ops:
self._prune_op(op, out_var, pruned_axis, pruned_idx)
@PRUNE_WORKER.register
class uniform_random_batch_size_like(activation):
def __init__(self, op, pruned_params, visited):
super(uniform_random_batch_size_like, self).__init__(op, pruned_params,
visited)
self.input_name = "Input"
self.output_name = "Out"
@PRUNE_WORKER.register
class bilinear_interp(activation):
def __init__(self, op, pruned_params, visited):
super(bilinear_interp, self).__init__(op, pruned_params, visited)
@PRUNE_WORKER.register
class nearest_interp(activation):
def __init__(self, op, pruned_params, visited):
super(nearest_interp, self).__init__(op, pruned_params, visited)
@PRUNE_WORKER.register
class relu(activation):
def __init__(self, op, pruned_params, visited):
super(relu, self).__init__(op, pruned_params, visited)
@PRUNE_WORKER.register
class leaky_relu(activation):
def __init__(self, op, pruned_params, visited):
super(leaky_relu, self).__init__(op, pruned_params, visited)
@PRUNE_WORKER.register
class floor(activation):
def __init__(self, op, pruned_params, visited):
super(floor, self).__init__(op, pruned_params, visited)
@PRUNE_WORKER.register
class relu6(activation):
def __init__(self, op, pruned_params, visited):
super(relu6, self).__init__(op, pruned_params, visited)
@PRUNE_WORKER.register
class MaxPool2d(activation):
def __init__(self, op, pruned_params, visited):
super(MaxPool2d, self).__init__(op, pruned_params, visited)
@PRUNE_WORKER.register
class sum(PruneWorker):
def __init__(self, op, pruned_params, visited):
super(sum, self).__init__(op, pruned_params, visited)
def _prune(self, var, pruned_axis, pruned_idx):
if var in self.op.outputs("Out"):
for in_var in self.op.inputs("X"):
pre_ops = in_var.inputs()
for op in pre_ops:
self._prune_op(op, in_var, pruned_axis, pruned_idx)
elif var in self.op.inputs("X"):
for in_var in self.op.inputs("X"):
if in_var != var:
pre_ops = in_var.inputs()
for op in pre_ops:
self._prune_op(op, in_var, pruned_axis, pruned_idx)
out_var = self.op.outputs("Out")[0]
self._visit(out_var, pruned_axis)
next_ops = out_var.outputs()
for op in next_ops:
self._prune_op(op, out_var, pruned_axis, pruned_idx)
@PRUNE_WORKER.register
class concat(PruneWorker):
def __init__(self, op, pruned_params, visited):
super(concat, self).__init__(op, pruned_params, visited)
def _prune(self, var, pruned_axis, pruned_idx):
idx = []
axis = self.op.attr("axis")
if var in self.op.outputs("Out"):
start = 0
if axis == pruned_axis:
for _, in_var in enumerate(self.op.inputs("X")):
idx = []
for i in pruned_idx:
r_idx = i - start
if r_idx < in_var.shape()[pruned_axis] and r_idx >= 0:
idx.append(r_idx)
start += in_var.shape()[pruned_axis]
pre_ops = in_var.inputs()
for op in pre_ops:
self._prune_op(op, in_var, pruned_axis, idx)
idx = pruned_idx[:]
else:
for _, in_var in enumerate(self.op.inputs("X")):
pre_ops = in_var.inputs()
for op in pre_ops:
self._prune_op(op, in_var, pruned_axis, pruned_idx)
elif var in self.op.inputs("X"):
if axis == pruned_axis:
idx = []
start = 0
for v in self.op.inputs("X"):
if v.name() == var.name():
idx = [i + start for i in pruned_idx]
else:
start += v.shape()[pruned_axis]
out_var = self.op.outputs("Out")[0]
self._visit(out_var, pruned_axis)
next_ops = out_var.outputs()
for op in next_ops:
self._prune_op(op, out_var, pruned_axis, idx, visited={})
else:
for v in self.op.inputs("X"):
for op in v.inputs():
self._prune_op(op, v, pruned_axis, pruned_idx)
out_var = self.op.outputs("Out")[0]
self._visit(out_var, pruned_axis)
next_ops = out_var.outputs()
for op in next_ops:
self._prune_op(op, out_var, pruned_axis, pruned_idx)
@PRUNE_WORKER.register
class depthwise_conv2d(PruneWorker):
def __init__(self, op, pruned_params, visited={}):
super(depthwise_conv2d, self).__init__(op, pruned_params, visited)
def _prune(self, var, pruned_axis, pruned_idx):
data_format = self.op.attr("data_format")
channel_axis = 1
if data_format == "NHWC":
channel_axis = 3
if var in self.op.inputs("Input"):
assert pruned_axis == channel_axis, "The Input of conv2d can only be pruned at channel axis, but got {}".format(
pruned_axis)
filter_var = self.op.inputs("Filter")[0]
self.pruned_params.append((filter_var, 0, pruned_idx))
self._visit(filter_var, 0)
new_groups = filter_var.shape()[0] - len(pruned_idx)
self.op.set_attr("groups", new_groups)
for op in filter_var.outputs():
self._prune_op(op, filter_var, 0, pruned_idx)
output_var = self.op.outputs("Output")[0]
next_ops = output_var.outputs()
for op in next_ops:
self._prune_op(op, output_var, channel_axis, pruned_idx)
elif var in self.op.inputs("Filter"):
assert pruned_axis in [0]
if pruned_axis == 0:
if len(self.op.inputs("Bias")) > 0:
self.pruned_params.append(
(self.op.inputs("Bias"), channel_axis, pruned_idx))
self.pruned_params.append((var, 0, pruned_idx))
new_groups = var.shape()[0] - len(pruned_idx)
self.op.set_attr("groups", new_groups)
for op in var.outputs():
self._prune_op(op, var, 0, pruned_idx)
output_var = self.op.outputs("Output")[0]
self._visit(output_var, channel_axis)
next_ops = output_var.outputs()
for op in next_ops:
self._prune_op(op, output_var, channel_axis, pruned_idx)
for op in var.outputs():
self._prune_op(op, var, pruned_axis, pruned_idx)
elif var in self.op.outputs("Output"):
assert pruned_axis == channel_axis
filter_var = self.op.inputs("Filter")[0]
self.pruned_params.append((filter_var, 0, pruned_idx))
self._visit(filter_var, 0)
new_groups = filter_var.shape()[0] - len(pruned_idx)
op.set_attr("groups", new_groups)
for op in filter_var.outputs():
self._prune_op(op, filter_var, 0, pruned_idx)
if len(self.op.inputs("Bias")) > 0:
self.pruned_params.append(
(self.op.inputs("Bias")[0], channel_axis, pruned_idx))
in_var = self.op.inputs("Input")[0]
self._visit(in_var, channel_axis)
pre_ops = in_var.inputs()
for op in pre_ops:
self._prune_op(op, in_var, channel_axis, pruned_idx)
output_var = self.op.outputs("Output")[0]
next_ops = output_var.outputs()
for op in next_ops:
self._prune_op(op, output_var, channel_axis, pruned_idx)
@PRUNE_WORKER.register
class mul(PruneWorker):
def __init__(self, op, pruned_params, visited={}):
super(mul, self).__init__(op, pruned_params, visited)
def _prune(self, var, pruned_axis, pruned_idx):
if var in self.op.inputs("X"):
assert pruned_axis == 1, "The Input of conv2d can only be pruned at axis 1, but got {}".format(
pruned_axis)
idx = []
feature_map_size = var.shape()[2] * var.shape()[3]
range_idx = np.array(range(feature_map_size))
for i in pruned_idx:
idx += list(range_idx + i * feature_map_size)
param_var = self.op.inputs("Y")[0]
self.pruned_params.append((param_var, 0, idx))
for op in param_var.outputs():
self._prune_op(op, param_var, 0, pruned_idx)
@PRUNE_WORKER.register
class scale(PruneWorker):
def __init__(self, op, pruned_params, visited={}):
super(scale, self).__init__(op, pruned_params, visited)
def _prune(self, var, pruned_axis, pruned_idx):
if var in self.op.inputs("X"):
out_var = self.op.outputs("Out")[0]
for op in out_var.outputs():
self._prune_op(op, out_var, pruned_axis, pruned_idx)
elif var in self.op.outputs("Out"):
in_var = self.op.inputs("X")[0]
for op in in_var.inputs():
self._prune_op(op, in_var, pruned_axis, pruned_idx)
@PRUNE_WORKER.register
class momentum(PruneWorker):
def __init__(self, op, pruned_params, visited={}):
super(momentum, self).__init__(op, pruned_params, visited)
def _prune(self, var, pruned_axis, pruned_idx):
if var in self.op.inputs("Param"):
_logger.debug("pruning momentum, var:{}".format(var.name()))
velocity_var = self.op.inputs("Velocity")[0]
self.pruned_params.append((velocity_var, pruned_axis, pruned_idx))
@PRUNE_WORKER.register
class adam(PruneWorker):
def __init__(self, op, pruned_params, visited={}):
super(adam, self).__init__(op, pruned_params, visited)
def _prune(self, var, pruned_axis, pruned_idx):
if var in self.op.inputs("Param"):
_logger.debug("pruning momentum, var:{}".format(var.name()))
moment1_var = self.op.inputs("Moment1")[0]
self.pruned_params.append((moment1_var, pruned_axis, pruned_idx))
moment2_var = self.op.inputs("Moment2")[0]
self.pruned_params.append((moment2_var, pruned_axis, pruned_idx))
...@@ -17,8 +17,13 @@ import sys ...@@ -17,8 +17,13 @@ import sys
import numpy as np import numpy as np
import paddle.fluid as fluid import paddle.fluid as fluid
import copy import copy
from ..core import VarWrapper, OpWrapper, GraphWrapper from ..core import GraphWrapper
try:
from ..core import DyGraph
except Exception as e:
pass
from .prune_walker import conv2d as conv2d_walker from .prune_walker import conv2d as conv2d_walker
from .dy_prune_walker import Conv2d as dy_conv2d_walker
from ..common import get_logger from ..common import get_logger
__all__ = ["Pruner"] __all__ = ["Pruner"]
...@@ -38,7 +43,7 @@ class Pruner(): ...@@ -38,7 +43,7 @@ class Pruner():
self.criterion = criterion self.criterion = criterion
def prune(self, def prune(self,
program, graph,
scope, scope,
params, params,
ratios, ratios,
...@@ -68,7 +73,13 @@ class Pruner(): ...@@ -68,7 +73,13 @@ class Pruner():
""" """
self.pruned_list = [] self.pruned_list = []
graph = GraphWrapper(program.clone()) if isinstance(graph, fluid.Program):
graph = GraphWrapper(program.clone())
elif isinstance(graph, torch.nn.Module):
graph = DyGraph(graph)
conv2d_walker = dy_conv2d_walker
else:
raise NotImplementedError('The type of graph is not supported.')
param_backup = {} if param_backup else None param_backup = {} if param_backup else None
param_shape_backup = {} if param_shape_backup else None param_shape_backup = {} if param_shape_backup else None
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册