Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
b571201c
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
1 年多 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b571201c
编写于
5月 15, 2020
作者:
X
xiteng1988
提交者:
GitHub
5月 15, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add slimfacenet to paddleslim/models (#284)
上级
db9a4275
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
374 addition
and
0 deletion
+374
-0
paddleslim/models/__init__.py
paddleslim/models/__init__.py
+1
-0
paddleslim/models/slimfacenet.py
paddleslim/models/slimfacenet.py
+373
-0
未找到文件。
paddleslim/models/__init__.py
浏览文件 @
b571201c
...
...
@@ -14,5 +14,6 @@
from
__future__
import
absolute_import
from
.util
import
image_classification
from
.slimfacenet
import
SlimFaceNet_A_x0_60
,
SlimFaceNet_B_x0_75
,
SlimFaceNet_C_x0_75
__all__
=
[
"image_classification"
]
paddleslim/models/slimfacenet.py
0 → 100644
浏览文件 @
b571201c
# ================================================================
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
math
import
datetime
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.initializer
import
MSRA
from
paddle.fluid.param_attr
import
ParamAttr
class
SlimFaceNet
():
def
__init__
(
self
,
class_dim
,
scale
=
0.6
,
arch
=
None
):
assert
arch
is
not
None
self
.
arch
=
arch
self
.
class_dim
=
class_dim
kernels
=
[
3
]
expansions
=
[
2
,
4
,
6
]
SE
=
[
0
,
1
]
self
.
table
=
[]
for
k
in
kernels
:
for
e
in
expansions
:
for
se
in
SE
:
self
.
table
.
append
((
k
,
e
,
se
))
if
scale
==
1.0
:
# 100% - channel
self
.
Slimfacenet_bottleneck_setting
=
[
# t, c , n ,s
[
2
,
64
,
5
,
2
],
[
4
,
128
,
1
,
2
],
[
2
,
128
,
6
,
1
],
[
4
,
128
,
1
,
2
],
[
2
,
128
,
2
,
1
]
]
elif
scale
==
0.9
:
# 90% - channel
self
.
Slimfacenet_bottleneck_setting
=
[
# t, c , n ,s
[
2
,
56
,
5
,
2
],
[
4
,
116
,
1
,
2
],
[
2
,
116
,
6
,
1
],
[
4
,
116
,
1
,
2
],
[
2
,
116
,
2
,
1
]
]
elif
scale
==
0.75
:
# 75% - channel
self
.
Slimfacenet_bottleneck_setting
=
[
# t, c , n ,s
[
2
,
48
,
5
,
2
],
[
4
,
96
,
1
,
2
],
[
2
,
96
,
6
,
1
],
[
4
,
96
,
1
,
2
],
[
2
,
96
,
2
,
1
]
]
elif
scale
==
0.6
:
# 60% - channel
self
.
Slimfacenet_bottleneck_setting
=
[
# t, c , n ,s
[
2
,
40
,
5
,
2
],
[
4
,
76
,
1
,
2
],
[
2
,
76
,
6
,
1
],
[
4
,
76
,
1
,
2
],
[
2
,
76
,
2
,
1
]
]
else
:
print
(
'WRONG scale'
)
exit
()
self
.
extract_feature
=
True
def
set_extract_feature_flag
(
self
,
flag
):
self
.
extract_feature
=
flag
def
net
(
self
,
input
,
label
=
None
):
x
=
self
.
conv_bn_layer
(
input
,
filter_size
=
3
,
num_filters
=
64
,
stride
=
2
,
padding
=
1
,
num_groups
=
1
,
if_act
=
True
,
name
=
'conv3x3'
)
x
=
self
.
conv_bn_layer
(
x
,
filter_size
=
3
,
num_filters
=
64
,
stride
=
1
,
padding
=
1
,
num_groups
=
64
,
if_act
=
True
,
name
=
'dw_conv3x3'
)
in_c
=
64
cnt
=
0
for
_exp
,
out_c
,
times
,
_stride
in
self
.
Slimfacenet_bottleneck_setting
:
for
i
in
range
(
times
):
stride
=
_stride
if
i
==
0
else
1
filter_size
,
exp
,
se
=
self
.
table
[
self
.
arch
[
cnt
]]
se
=
False
if
se
==
0
else
True
x
=
self
.
residual_unit
(
x
,
num_in_filter
=
in_c
,
num_out_filter
=
out_c
,
stride
=
stride
,
filter_size
=
filter_size
,
expansion_factor
=
exp
,
use_se
=
se
,
name
=
'residual_unit'
+
str
(
cnt
+
1
))
cnt
+=
1
in_c
=
out_c
out_c
=
512
x
=
self
.
conv_bn_layer
(
x
,
filter_size
=
1
,
num_filters
=
out_c
,
stride
=
1
,
padding
=
0
,
num_groups
=
1
,
if_act
=
True
,
name
=
'conv1x1'
)
x
=
self
.
conv_bn_layer
(
x
,
filter_size
=
(
7
,
6
),
num_filters
=
out_c
,
stride
=
1
,
padding
=
0
,
num_groups
=
out_c
,
if_act
=
False
,
name
=
'global_dw_conv7x7'
)
x
=
fluid
.
layers
.
conv2d
(
x
,
num_filters
=
128
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
groups
=
1
,
act
=
None
,
use_cudnn
=
True
,
param_attr
=
ParamAttr
(
name
=
'linear_conv1x1_weights'
,
initializer
=
MSRA
(),
regularizer
=
fluid
.
regularizer
.
L2Decay
(
4e-4
)),
bias_attr
=
False
)
bn_name
=
'linear_conv1x1_bn'
x
=
fluid
.
layers
.
batch_norm
(
x
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
"_scale"
),
bias_attr
=
ParamAttr
(
name
=
bn_name
+
"_offset"
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
x
=
fluid
.
layers
.
reshape
(
x
,
shape
=
[
x
.
shape
[
0
],
x
.
shape
[
1
]])
if
self
.
extract_feature
:
return
x
out
=
self
.
arc_margin_product
(
x
,
label
,
self
.
class_dim
,
s
=
32.0
,
m
=
0.50
,
mode
=
2
)
softmax
=
fluid
.
layers
.
softmax
(
input
=
out
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
softmax
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
1
)
return
loss
,
acc
def
residual_unit
(
self
,
input
,
num_in_filter
,
num_out_filter
,
stride
,
filter_size
,
expansion_factor
,
use_se
=
False
,
name
=
None
):
num_expfilter
=
int
(
round
(
num_in_filter
*
expansion_factor
))
input_data
=
input
expand_conv
=
self
.
conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
num_filters
=
num_expfilter
,
stride
=
1
,
padding
=
0
,
if_act
=
True
,
name
=
name
+
'_expand'
)
depthwise_conv
=
self
.
conv_bn_layer
(
input
=
expand_conv
,
filter_size
=
filter_size
,
num_filters
=
num_expfilter
,
stride
=
stride
,
padding
=
int
((
filter_size
-
1
)
//
2
),
if_act
=
True
,
num_groups
=
num_expfilter
,
use_cudnn
=
True
,
name
=
name
+
'_depthwise'
)
if
use_se
:
depthwise_conv
=
self
.
se_block
(
input
=
depthwise_conv
,
num_out_filter
=
num_expfilter
,
name
=
name
+
'_se'
)
linear_conv
=
self
.
conv_bn_layer
(
input
=
depthwise_conv
,
filter_size
=
1
,
num_filters
=
num_out_filter
,
stride
=
1
,
padding
=
0
,
if_act
=
False
,
name
=
name
+
'_linear'
)
if
num_in_filter
!=
num_out_filter
or
stride
!=
1
:
return
linear_conv
else
:
return
fluid
.
layers
.
elementwise_add
(
x
=
input_data
,
y
=
linear_conv
,
act
=
None
)
def
se_block
(
self
,
input
,
num_out_filter
,
ratio
=
4
,
name
=
None
):
num_mid_filter
=
int
(
num_out_filter
//
ratio
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
input
,
pool_type
=
'avg'
,
global_pooling
=
True
,
use_cudnn
=
False
)
conv1
=
fluid
.
layers
.
conv2d
(
input
=
pool
,
filter_size
=
1
,
num_filters
=
num_mid_filter
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
'_1_weights'
),
bias_attr
=
ParamAttr
(
name
=
name
+
'_1_offset'
))
conv1
=
fluid
.
layers
.
prelu
(
conv1
,
mode
=
'channel'
,
param_attr
=
ParamAttr
(
name
=
name
+
'_prelu'
,
regularizer
=
fluid
.
regularizer
.
L2Decay
(
0.0
)))
conv2
=
fluid
.
layers
.
conv2d
(
input
=
conv1
,
filter_size
=
1
,
num_filters
=
num_out_filter
,
act
=
'hard_sigmoid'
,
param_attr
=
ParamAttr
(
name
=
name
+
'_2_weights'
),
bias_attr
=
ParamAttr
(
name
=
name
+
'_2_offset'
))
scale
=
fluid
.
layers
.
elementwise_mul
(
x
=
input
,
y
=
conv2
,
axis
=
0
)
return
scale
def
conv_bn_layer
(
self
,
input
,
filter_size
,
num_filters
,
stride
,
padding
,
num_groups
=
1
,
if_act
=
True
,
name
=
None
,
use_cudnn
=
True
):
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
groups
=
num_groups
,
act
=
None
,
use_cudnn
=
use_cudnn
,
param_attr
=
ParamAttr
(
name
=
name
+
'_weights'
,
initializer
=
MSRA
()),
bias_attr
=
False
)
bn_name
=
name
+
'_bn'
bn
=
fluid
.
layers
.
batch_norm
(
input
=
conv
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
"_scale"
),
bias_attr
=
ParamAttr
(
name
=
bn_name
+
"_offset"
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
if
if_act
:
return
fluid
.
layers
.
prelu
(
bn
,
mode
=
'channel'
,
param_attr
=
ParamAttr
(
name
=
name
+
'_prelu'
,
regularizer
=
fluid
.
regularizer
.
L2Decay
(
0.0
)))
else
:
return
bn
def
arc_margin_product
(
self
,
input
,
label
,
out_dim
,
s
=
32.0
,
m
=
0.50
,
mode
=
2
):
input_norm
=
fluid
.
layers
.
sqrt
(
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
square
(
input
),
dim
=
1
))
input
=
fluid
.
layers
.
elementwise_div
(
input
,
input_norm
,
axis
=
0
)
weight
=
fluid
.
layers
.
create_parameter
(
shape
=
[
out_dim
,
input
.
shape
[
1
]],
dtype
=
'float32'
,
name
=
'weight_norm'
,
attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Xavier
(),
regularizer
=
fluid
.
regularizer
.
L2Decay
(
4e-4
)))
weight_norm
=
fluid
.
layers
.
sqrt
(
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
square
(
weight
),
dim
=
1
))
weight
=
fluid
.
layers
.
elementwise_div
(
weight
,
weight_norm
,
axis
=
0
)
weight
=
fluid
.
layers
.
transpose
(
weight
,
perm
=
[
1
,
0
])
cosine
=
fluid
.
layers
.
mul
(
input
,
weight
)
sine
=
fluid
.
layers
.
sqrt
(
1.0
-
fluid
.
layers
.
square
(
cosine
))
cos_m
=
math
.
cos
(
m
)
sin_m
=
math
.
sin
(
m
)
phi
=
cosine
*
cos_m
-
sine
*
sin_m
th
=
math
.
cos
(
math
.
pi
-
m
)
mm
=
math
.
sin
(
math
.
pi
-
m
)
*
m
if
mode
==
1
:
phi
=
self
.
paddle_where_more_than
(
cosine
,
0
,
phi
,
cosine
)
elif
mode
==
2
:
phi
=
self
.
paddle_where_more_than
(
cosine
,
th
,
phi
,
cosine
-
mm
)
else
:
pass
one_hot
=
fluid
.
layers
.
one_hot
(
input
=
label
,
depth
=
out_dim
)
output
=
fluid
.
layers
.
elementwise_mul
(
one_hot
,
phi
)
+
fluid
.
layers
.
elementwise_mul
(
(
1.0
-
one_hot
),
cosine
)
output
=
output
*
s
return
output
def
paddle_where_more_than
(
self
,
target
,
limit
,
x
,
y
):
mask
=
fluid
.
layers
.
cast
(
x
=
(
target
>
limit
),
dtype
=
'float32'
)
output
=
fluid
.
layers
.
elementwise_mul
(
mask
,
x
)
+
fluid
.
layers
.
elementwise_mul
((
1.0
-
mask
),
y
)
return
output
def
SlimFaceNet_A_x0_60
(
class_dim
=
None
,
scale
=
0.6
,
arch
=
None
):
scale
=
0.6
arch
=
[
0
,
1
,
5
,
1
,
0
,
2
,
1
,
2
,
0
,
1
,
2
,
1
,
1
,
0
,
1
]
return
SlimFaceNet
(
class_dim
=
class_dim
,
scale
=
scale
,
arch
=
arch
)
def
SlimFaceNet_B_x0_75
(
class_dim
=
None
,
scale
=
0.6
,
arch
=
None
):
scale
=
0.75
arch
=
[
1
,
1
,
0
,
1
,
1
,
1
,
1
,
0
,
1
,
0
,
1
,
3
,
2
,
2
,
3
]
return
SlimFaceNet
(
class_dim
=
class_dim
,
scale
=
scale
,
arch
=
arch
)
def
SlimFaceNet_C_x0_75
(
class_dim
=
None
,
scale
=
0.6
,
arch
=
None
):
scale
=
0.75
arch
=
[
1
,
1
,
2
,
1
,
0
,
2
,
1
,
0
,
1
,
0
,
1
,
1
,
2
,
2
,
3
]
return
SlimFaceNet
(
class_dim
=
class_dim
,
scale
=
scale
,
arch
=
arch
)
if
__name__
==
"__main__"
:
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
[
-
1
,
3
,
112
,
112
],
dtype
=
'float32'
)
print
(
x
.
shape
)
model
=
SlimFaceNet
(
10000
,
[
1
,
3
,
3
,
1
,
1
,
0
,
0
,
1
,
0
,
1
,
1
,
0
,
5
,
5
,
3
])
y
=
model
.
net
(
x
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录