Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
aa7e3b37
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
大约 1 年 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
aa7e3b37
编写于
11月 19, 2019
作者:
C
ceci3
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add mobilenetv2 block
上级
ffad56ea
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
414 addition
and
1 deletion
+414
-1
demo/block_sa_nas_mobilenetv2_cifar10.py
demo/block_sa_nas_mobilenetv2_cifar10.py
+143
-0
demo/sa_nas_mobilenetv2_cifar10.py
demo/sa_nas_mobilenetv2_cifar10.py
+8
-1
paddleslim/nas/search_space/__init__.py
paddleslim/nas/search_space/__init__.py
+2
-0
paddleslim/nas/search_space/mobilenetv2_block.py
paddleslim/nas/search_space/mobilenetv2_block.py
+261
-0
未找到文件。
demo/block_sa_nas_mobilenetv2_cifar10.py
0 → 100644
浏览文件 @
aa7e3b37
import
sys
sys
.
path
.
append
(
'..'
)
import
numpy
as
np
import
argparse
import
ast
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddleslim.nas.search_space.search_space_factory
import
SearchSpaceFactory
from
paddleslim.analysis
import
flops
from
paddleslim.nas
import
SANAS
def
create_data_loader
():
data
=
fluid
.
data
(
name
=
'data'
,
shape
=
[
-
1
,
3
,
32
,
32
],
dtype
=
'float32'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
-
1
,
1
],
dtype
=
'int64'
)
data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
[
data
,
label
],
capacity
=
1024
,
use_double_buffer
=
True
,
iterable
=
True
)
return
data_loader
,
data
,
label
def
init_sa_nas
(
config
):
factory
=
SearchSpaceFactory
()
space
=
factory
.
get_search_space
(
config
)
model_arch
=
space
.
token2arch
()[
0
]
main_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main_program
,
startup_program
):
data_loader
,
data
,
label
=
create_data_loader
()
output
=
model_arch
(
data
)
output
=
fluid
.
layers
.
fc
(
input
=
output
,
size
=
args
.
class_dim
,
param_attr
=
ParamAttr
(
name
=
'mobilenetv2_fc_weights'
),
bias_attr
=
ParamAttr
(
name
=
'mobilenetv2_fc_offset'
))
cost
=
fluid
.
layers
.
mean
(
fluid
.
layers
.
softmax_with_cross_entropy
(
logits
=
output
,
label
=
label
))
base_flops
=
flops
(
main_program
)
search_steps
=
10000000
### start a server and a client
sa_nas
=
SANAS
(
config
,
max_flops
=
base_flops
,
search_steps
=
search_steps
)
### start a client, server_addr is server address
#sa_nas = SANAS(config, max_flops = base_flops, server_addr=("10.255.125.38", 18607), search_steps = search_steps, is_server=False)
return
sa_nas
,
search_steps
def
search_mobilenetv2_cifar10
(
config
,
args
):
sa_nas
,
search_steps
=
init_sa_nas
(
config
)
for
i
in
range
(
search_steps
):
print
(
'search step: '
,
i
)
archs
=
sa_nas
.
next_archs
()[
0
]
train_program
=
fluid
.
Program
()
test_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
train_program
,
startup_program
):
train_loader
,
data
,
label
=
create_data_loader
()
output
=
archs
(
data
)
output
=
fluid
.
layers
.
fc
(
input
=
output
,
size
=
args
.
class_dim
,
param_attr
=
ParamAttr
(
name
=
'mobilenetv2_fc_weights'
),
bias_attr
=
ParamAttr
(
name
=
'mobilenetv2_fc_offset'
))
cost
=
fluid
.
layers
.
mean
(
fluid
.
layers
.
softmax_with_cross_entropy
(
logits
=
output
,
label
=
label
))[
0
]
test_program
=
train_program
.
clone
(
for_test
=
True
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
0.1
,
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
))
optimizer
.
minimize
(
cost
)
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_program
)
train_reader
=
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
cifar
.
train10
(
cycle
=
False
),
buf_size
=
1024
)
train_loader
.
set_sample_generator
(
train_reader
,
batch_size
=
512
,
places
=
fluid
.
cuda_places
()
if
args
.
use_gpu
else
fluid
.
cpu_places
())
test_loader
,
_
,
_
=
create_data_loader
()
test_reader
=
paddle
.
dataset
.
cifar
.
test10
(
cycle
=
False
)
test_loader
.
set_sample_generator
(
test_reader
,
batch_size
=
256
,
drop_last
=
False
,
places
=
fluid
.
cuda_places
()
if
args
.
use_gpu
else
fluid
.
cpu_places
())
for
epoch_id
in
range
(
10
):
for
batch_id
,
data
in
enumerate
(
train_loader
()):
loss
=
exe
.
run
(
train_program
,
feed
=
data
,
fetch_list
=
[
cost
.
name
])[
0
]
if
batch_id
%
5
==
0
:
print
(
'epoch: {}, batch: {}, loss: {}'
.
format
(
epoch_id
,
batch_id
,
loss
[
0
]))
for
data
in
test_loader
():
reward
=
exe
.
run
(
test_program
,
feed
=
data
,
fetch_list
=
[
cost
.
name
])[
0
]
print
(
'reward:'
,
reward
)
sa_nas
.
reward
(
float
(
reward
))
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
(
description
=
'SA NAS MobileNetV2 cifar10 argparase'
)
parser
.
add_argument
(
'--use_gpu'
,
type
=
ast
.
literal_eval
,
default
=
True
,
help
=
'Whether to use GPU in train/test model.'
)
parser
.
add_argument
(
'--class_dim'
,
type
=
int
,
default
=
1000
,
help
=
'classify number.'
)
args
=
parser
.
parse_args
()
print
(
args
)
# block mask means block number, 1 mean downsample, 0 means the size of feature map don't change after this block
config_info
=
{
'input_size'
:
32
,
'output_size'
:
1
,
'block_num'
:
5
,
'block_mask'
:
[
0
,
0
,
1
,
0
,
0
,
1
,
0
,
0
,
1
,
0
,
0
]
}
config
=
[(
'MobileNetV2BlockSpace'
,
config_info
)]
search_mobilenetv2_cifar10
(
config
,
args
)
demo/sa_nas_mobilenetv2_cifar10.py
浏览文件 @
aa7e3b37
...
...
@@ -52,6 +52,7 @@ def search_mobilenetv2_cifar10(config, args):
for
i
in
range
(
search_steps
):
print
(
'search step: '
,
i
)
archs
=
sa_nas
.
next_archs
()[
0
]
train_program
=
fluid
.
Program
()
test_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
...
...
@@ -72,6 +73,7 @@ def search_mobilenetv2_cifar10(config, args):
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_program
)
train_reader
=
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
cifar
.
train10
(
cycle
=
False
),
buf_size
=
1024
)
train_loader
.
set_sample_generator
(
...
...
@@ -116,7 +118,12 @@ if __name__ == '__main__':
args
=
parser
.
parse_args
()
print
(
args
)
config_info
=
{
'input_size'
:
32
,
'output_size'
:
1
,
'block_num'
:
5
}
config_info
=
{
'input_size'
:
32
,
'output_size'
:
1
,
'block_num'
:
5
,
'block_mask'
:
None
}
config
=
[(
'MobileNetV2Space'
,
config_info
)]
search_mobilenetv2_cifar10
(
config
,
args
)
paddleslim/nas/search_space/__init__.py
浏览文件 @
aa7e3b37
...
...
@@ -14,6 +14,8 @@
import
mobilenetv2
from
.mobilenetv2
import
*
import
mobilenetv2_block
from
.mobilenetv2_block
import
*
import
mobilenetv1
from
.mobilenetv1
import
*
import
resnet
...
...
paddleslim/nas/search_space/mobilenetv2_block.py
0 → 100644
浏览文件 @
aa7e3b37
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
numpy
as
np
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
.search_space_base
import
SearchSpaceBase
from
.base_layer
import
conv_bn_layer
from
.search_space_registry
import
SEARCHSPACE
__all__
=
[
"MobileNetV2BlockSpace"
]
@
SEARCHSPACE
.
register
class
MobileNetV2BlockSpace
(
SearchSpaceBase
):
def
__init__
(
self
,
input_size
,
output_size
,
block_num
,
block_mask
=
None
,
scale
=
1.0
):
super
(
MobileNetV2BlockSpace
,
self
).
__init__
(
input_size
,
output_size
,
block_num
,
block_mask
)
self
.
filter_num1
=
np
.
array
([
3
,
4
,
8
,
12
,
16
,
24
,
32
,
48
])
self
.
filter_num1
=
np
.
array
([
3
,
4
,
8
,
12
,
16
,
24
,
32
,
48
])
#8
self
.
filter_num2
=
np
.
array
([
8
,
12
,
16
,
24
,
32
,
48
,
64
,
80
])
#8
self
.
filter_num3
=
np
.
array
([
16
,
24
,
32
,
48
,
64
,
80
,
96
,
128
])
#8
self
.
filter_num4
=
np
.
array
(
[
24
,
32
,
48
,
64
,
80
,
96
,
128
,
144
,
160
,
192
])
#10
self
.
filter_num5
=
np
.
array
(
[
32
,
48
,
64
,
80
,
96
,
128
,
144
,
160
,
192
,
224
])
#10
self
.
filter_num6
=
np
.
array
(
[
64
,
80
,
96
,
128
,
144
,
160
,
192
,
224
,
256
,
320
,
384
,
512
])
#12
# self.k_size means kernel size
self
.
k_size
=
np
.
array
([
3
,
5
])
#2
# self.multiply means expansion_factor of each _inverted_residual_unit
self
.
multiply
=
np
.
array
([
1
,
2
,
3
,
4
,
6
])
#5
# self.repeat means repeat_num _inverted_residual_unit in each _invresi_blocks
self
.
repeat
=
np
.
array
([
1
,
2
,
3
,
4
,
5
,
6
])
#6
self
.
scale
=
scale
def
init_tokens
(
self
):
return
[
0
]
*
(
len
(
self
.
block_mask
)
*
4
)
def
range_table
(
self
):
range_table_base
=
[]
if
self
.
block_mask
!=
None
:
for
i
in
range
(
len
(
self
.
block_mask
)):
filter_num
=
self
.
__dict__
[
'filter_num{}'
.
format
(
i
+
1
if
i
<
6
else
6
)]
range_table_base
.
append
(
len
(
self
.
multiply
))
range_table_base
.
append
(
len
(
filter_num
))
range_table_base
.
append
(
len
(
self
.
repeat
))
range_table_base
.
append
(
len
(
self
.
k_size
))
#[len(self.multiply), len(self.filter_num1), len(self.repeat), len(self.k_size),
# len(self.multiply), len(self.filter_num1), len(self.repeat), len(self.k_size),
# len(self.multiply), len(self.filter_num2), len(self.repeat), len(self.k_size),
# len(self.multiply), len(self.filter_num3), len(self.repeat), len(self.k_size),
# len(self.multiply), len(self.filter_num4), len(self.repeat), len(self.k_size),
# len(self.multiply), len(self.filter_num5), len(self.repeat), len(self.k_size),
# len(self.multiply), len(self.filter_num6), len(self.repeat), len(self.k_size)]
return
range_table_base
def
token2arch
(
self
,
tokens
=
None
):
"""
return mobilenetv2 net_arch function
"""
if
tokens
is
None
:
tokens
=
self
.
init_tokens
()
print
(
tokens
)
print
(
len
(
tokens
))
bottleneck_params_list
=
[]
if
self
.
block_mask
==
None
:
if
self
.
block_num
>=
1
:
bottleneck_params_list
.
append
(
(
1
,
self
.
head_num
[
tokens
[
0
]],
1
,
1
,
3
))
if
self
.
block_num
>=
2
:
bottleneck_params_list
.
append
(
(
self
.
multiply
[
tokens
[
1
]],
self
.
filter_num1
[
tokens
[
2
]],
self
.
repeat
[
tokens
[
3
]],
2
,
self
.
k_size
[
tokens
[
4
]]))
if
self
.
block_num
>=
3
:
bottleneck_params_list
.
append
(
(
self
.
multiply
[
tokens
[
5
]],
self
.
filter_num1
[
tokens
[
6
]],
self
.
repeat
[
tokens
[
7
]],
2
,
self
.
k_size
[
tokens
[
8
]]))
if
self
.
block_num
>=
4
:
bottleneck_params_list
.
append
(
(
self
.
multiply
[
tokens
[
9
]],
self
.
filter_num2
[
tokens
[
10
]],
self
.
repeat
[
tokens
[
11
]],
2
,
self
.
k_size
[
tokens
[
12
]]))
if
self
.
block_num
>=
5
:
bottleneck_params_list
.
append
(
(
self
.
multiply
[
tokens
[
13
]],
self
.
filter_num3
[
tokens
[
14
]],
self
.
repeat
[
tokens
[
15
]],
2
,
self
.
k_size
[
tokens
[
16
]]))
bottleneck_params_list
.
append
(
(
self
.
multiply
[
tokens
[
17
]],
self
.
filter_num4
[
tokens
[
18
]],
self
.
repeat
[
tokens
[
19
]],
1
,
self
.
k_size
[
tokens
[
20
]]))
if
self
.
block_num
>=
6
:
bottleneck_params_list
.
append
(
(
self
.
multiply
[
tokens
[
21
]],
self
.
filter_num5
[
tokens
[
22
]],
self
.
repeat
[
tokens
[
23
]],
2
,
self
.
k_size
[
tokens
[
24
]]))
bottleneck_params_list
.
append
(
(
self
.
multiply
[
tokens
[
25
]],
self
.
filter_num6
[
tokens
[
26
]],
self
.
repeat
[
tokens
[
27
]],
1
,
self
.
k_size
[
tokens
[
28
]]))
else
:
for
i
in
range
(
len
(
self
.
block_mask
)):
filter_num
=
self
.
__dict__
[
'filter_num{}'
.
format
(
i
+
1
if
i
<
6
else
6
)]
bottleneck_params_list
.
append
(
(
self
.
multiply
[
tokens
[
i
*
4
]],
filter_num
[
tokens
[
i
*
4
+
1
]],
self
.
repeat
[
tokens
[
i
*
4
+
2
]],
2
if
self
.
block_mask
[
i
]
==
1
else
1
,
self
.
k_size
[
tokens
[
i
*
4
+
3
]]))
def
net_arch
(
input
):
# all padding is 'SAME' in the conv2d, can compute the actual padding automatic.
# bottleneck sequences
i
=
1
in_c
=
int
(
32
*
self
.
scale
)
for
layer_setting
in
bottleneck_params_list
:
t
,
c
,
n
,
s
,
k
=
layer_setting
i
+=
1
input
=
self
.
_invresi_blocks
(
input
=
input
,
in_c
=
in_c
,
t
=
t
,
c
=
int
(
c
*
self
.
scale
),
n
=
n
,
s
=
s
,
k
=
k
,
name
=
'mobilenetv2_conv'
+
str
(
i
))
in_c
=
int
(
c
*
self
.
scale
)
return
input
return
net_arch
def
_shortcut
(
self
,
input
,
data_residual
):
"""Build shortcut layer.
Args:
input(Variable): input.
data_residual(Variable): residual layer.
Returns:
Variable, layer output.
"""
return
fluid
.
layers
.
elementwise_add
(
input
,
data_residual
)
def
_inverted_residual_unit
(
self
,
input
,
num_in_filter
,
num_filters
,
ifshortcut
,
stride
,
filter_size
,
expansion_factor
,
reduction_ratio
=
4
,
name
=
None
):
"""Build inverted residual unit.
Args:
input(Variable), input.
num_in_filter(int), number of in filters.
num_filters(int), number of filters.
ifshortcut(bool), whether using shortcut.
stride(int), stride.
filter_size(int), filter size.
padding(str|int|list), padding.
expansion_factor(float), expansion factor.
name(str), name.
Returns:
Variable, layers output.
"""
num_expfilter
=
int
(
round
(
num_in_filter
*
expansion_factor
))
channel_expand
=
conv_bn_layer
(
input
=
input
,
num_filters
=
num_expfilter
,
filter_size
=
1
,
stride
=
1
,
padding
=
'SAME'
,
num_groups
=
1
,
act
=
'relu6'
,
name
=
name
+
'_expand'
)
bottleneck_conv
=
conv_bn_layer
(
input
=
channel_expand
,
num_filters
=
num_expfilter
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
'SAME'
,
num_groups
=
num_expfilter
,
act
=
'relu6'
,
name
=
name
+
'_dwise'
,
use_cudnn
=
False
)
linear_out
=
conv_bn_layer
(
input
=
bottleneck_conv
,
num_filters
=
num_filters
,
filter_size
=
1
,
stride
=
1
,
padding
=
'SAME'
,
num_groups
=
1
,
act
=
None
,
name
=
name
+
'_linear'
)
out
=
linear_out
if
ifshortcut
:
out
=
self
.
_shortcut
(
input
=
input
,
data_residual
=
out
)
return
out
def
_invresi_blocks
(
self
,
input
,
in_c
,
t
,
c
,
n
,
s
,
k
,
name
=
None
):
"""Build inverted residual blocks.
Args:
input: Variable, input.
in_c: int, number of in filters.
t: float, expansion factor.
c: int, number of filters.
n: int, number of layers.
s: int, stride.
k: int, filter size.
name: str, name.
Returns:
Variable, layers output.
"""
first_block
=
self
.
_inverted_residual_unit
(
input
=
input
,
num_in_filter
=
in_c
,
num_filters
=
c
,
ifshortcut
=
False
,
stride
=
s
,
filter_size
=
k
,
expansion_factor
=
t
,
name
=
name
+
'_1'
)
last_residual_block
=
first_block
last_c
=
c
for
i
in
range
(
1
,
n
):
last_residual_block
=
self
.
_inverted_residual_unit
(
input
=
last_residual_block
,
num_in_filter
=
last_c
,
num_filters
=
c
,
ifshortcut
=
True
,
stride
=
1
,
filter_size
=
k
,
expansion_factor
=
t
,
name
=
name
+
'_'
+
str
(
i
+
1
))
return
last_residual_block
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录