Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
a7eb5e5b
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
大约 2 年 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a7eb5e5b
编写于
6月 02, 2020
作者:
T
Teng Xi
提交者:
GitHub
6月 02, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add SlimMobileNet models (#320)
* add SlimMobileNet models * add SlimMobileNet model
上级
b5871048
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
323 addition
and
1 deletion
+323
-1
paddleslim/models/__init__.py
paddleslim/models/__init__.py
+1
-1
paddleslim/models/slim_mobilenet.py
paddleslim/models/slim_mobilenet.py
+322
-0
未找到文件。
paddleslim/models/__init__.py
浏览文件 @
a7eb5e5b
...
@@ -15,5 +15,5 @@
...
@@ -15,5 +15,5 @@
from
__future__
import
absolute_import
from
__future__
import
absolute_import
from
.util
import
image_classification
from
.util
import
image_classification
from
.slimfacenet
import
SlimFaceNet_A_x0_60
,
SlimFaceNet_B_x0_75
,
SlimFaceNet_C_x0_75
from
.slimfacenet
import
SlimFaceNet_A_x0_60
,
SlimFaceNet_B_x0_75
,
SlimFaceNet_C_x0_75
from
.slim_mobilenet
import
SlimMobileNet_v1
,
SlimMobileNet_v2
,
SlimMobileNet_v3
,
SlimMobileNet_v4
,
SlimMobileNet_v5
__all__
=
[
"image_classification"
]
__all__
=
[
"image_classification"
]
paddleslim/models/slim_mobilenet.py
0 → 100644
浏览文件 @
a7eb5e5b
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
paddle.fluid
as
fluid
from
paddle.fluid.initializer
import
MSRA
from
paddle.fluid.param_attr
import
ParamAttr
__all__
=
[
'SlimMobileNet_v1'
,
'SlimMobileNet_v2'
,
'SlimMobileNet_v3'
,
'SlimMobileNet_v4'
,
'SlimMobileNet_v5'
]
class
SlimMobileNet
():
def
__init__
(
self
,
scale
=
1.0
,
model_name
=
'large'
,
token
=
[]):
assert
len
(
token
)
>=
45
self
.
kernel_size_lis
=
token
[:
20
]
self
.
exp_lis
=
token
[
20
:
40
]
self
.
depth_lis
=
token
[
40
:
45
]
self
.
scale
=
scale
self
.
inplanes
=
16
if
model_name
==
"large"
:
self
.
cfg_channel
=
[
16
,
24
,
40
,
80
,
112
,
160
]
self
.
cfg_stride
=
[
1
,
2
,
2
,
2
,
1
,
2
]
self
.
cfg_se
=
[
False
,
False
,
True
,
False
,
True
,
True
]
self
.
cfg_act
=
[
'relu'
,
'relu'
,
'relu'
,
'hard_swish'
,
'hard_swish'
,
'hard_swish'
]
self
.
cls_ch_squeeze
=
960
self
.
cls_ch_expand
=
1280
else
:
raise
NotImplementedError
(
"mode["
+
model_name
+
"_model] is not implemented!"
)
def
net
(
self
,
input
,
class_dim
=
1000
):
scale
=
self
.
scale
inplanes
=
self
.
inplanes
kernel_size_lis
=
self
.
kernel_size_lis
exp_lis
=
self
.
exp_lis
depth_lis
=
self
.
depth_lis
cfg_channel
=
self
.
cfg_channel
cfg_stride
=
self
.
cfg_stride
cfg_se
=
self
.
cfg_se
cfg_act
=
self
.
cfg_act
cls_ch_squeeze
=
self
.
cls_ch_squeeze
cls_ch_expand
=
self
.
cls_ch_expand
#conv1
conv
=
self
.
conv_bn_layer
(
input
,
filter_size
=
3
,
num_filters
=
self
.
make_divisible
(
inplanes
*
scale
),
stride
=
2
,
padding
=
1
,
num_groups
=
1
,
if_act
=
True
,
act
=
'hard_swish'
,
name
=
'conv1'
)
inplanes
=
self
.
make_divisible
(
inplanes
*
scale
)
#conv2
num_mid_filter
=
self
.
make_divisible
(
scale
*
inplanes
)
_num_out_filter
=
cfg_channel
[
0
]
num_out_filter
=
self
.
make_divisible
(
scale
*
_num_out_filter
)
conv
=
self
.
residual_unit
(
input
=
conv
,
num_in_filter
=
inplanes
,
num_mid_filter
=
num_mid_filter
,
num_out_filter
=
num_out_filter
,
act
=
cfg_act
[
0
],
stride
=
cfg_stride
[
0
],
filter_size
=
3
,
use_se
=
cfg_se
[
0
],
name
=
'conv2'
,
short
=
True
)
inplanes
=
self
.
make_divisible
(
scale
*
cfg_channel
[
0
])
i
=
3
for
depth_id
in
range
(
len
(
depth_lis
)):
for
repeat_time
in
range
(
depth_lis
[
depth_id
]):
num_mid_filter
=
self
.
make_divisible
(
scale
*
_num_out_filter
*
exp_lis
[
depth_id
*
4
+
repeat_time
])
_num_out_filter
=
cfg_channel
[
depth_id
+
1
]
num_out_filter
=
self
.
make_divisible
(
scale
*
_num_out_filter
)
stride
=
cfg_stride
[
depth_id
+
1
]
if
repeat_time
==
0
else
1
conv
=
self
.
residual_unit
(
input
=
conv
,
num_in_filter
=
inplanes
,
num_mid_filter
=
num_mid_filter
,
num_out_filter
=
num_out_filter
,
act
=
cfg_act
[
depth_id
+
1
],
stride
=
stride
,
filter_size
=
kernel_size_lis
[
depth_id
*
4
+
repeat_time
],
use_se
=
cfg_se
[
depth_id
+
1
],
name
=
'conv'
+
str
(
i
))
inplanes
=
self
.
make_divisible
(
scale
*
cfg_channel
[
depth_id
+
1
])
i
+=
1
conv
=
self
.
conv_bn_layer
(
input
=
conv
,
filter_size
=
1
,
num_filters
=
self
.
make_divisible
(
scale
*
cls_ch_squeeze
),
stride
=
1
,
padding
=
0
,
num_groups
=
1
,
if_act
=
True
,
act
=
'hard_swish'
,
name
=
'conv_last'
)
conv
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_type
=
'avg'
,
global_pooling
=
True
,
use_cudnn
=
False
)
conv
=
fluid
.
layers
.
conv2d
(
input
=
conv
,
num_filters
=
cls_ch_expand
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
'last_1x1_conv_weights'
),
bias_attr
=
False
)
conv
=
fluid
.
layers
.
hard_swish
(
conv
)
drop
=
fluid
.
layers
.
dropout
(
x
=
conv
,
dropout_prob
=
0.2
)
out
=
fluid
.
layers
.
fc
(
input
=
drop
,
size
=
class_dim
,
param_attr
=
ParamAttr
(
name
=
'fc_weights'
),
bias_attr
=
ParamAttr
(
name
=
'fc_offset'
))
return
out
def
conv_bn_layer
(
self
,
input
,
filter_size
,
num_filters
,
stride
,
padding
,
num_groups
=
1
,
if_act
=
True
,
act
=
None
,
name
=
None
,
use_cudnn
=
True
,
res_last_bn_init
=
False
):
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
groups
=
num_groups
,
act
=
None
,
use_cudnn
=
use_cudnn
,
param_attr
=
ParamAttr
(
name
=
name
+
'_weights'
),
bias_attr
=
False
)
bn_name
=
name
+
'_bn'
bn
=
fluid
.
layers
.
batch_norm
(
input
=
conv
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
"_scale"
,
regularizer
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularization_coeff
=
0.0
)),
bias_attr
=
ParamAttr
(
name
=
bn_name
+
"_offset"
,
regularizer
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularization_coeff
=
0.0
)),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
if
if_act
:
if
act
==
'relu'
:
bn
=
fluid
.
layers
.
relu
(
bn
)
elif
act
==
'hard_swish'
:
bn
=
fluid
.
layers
.
hard_swish
(
bn
)
return
bn
def
make_divisible
(
self
,
v
,
divisor
=
8
,
min_value
=
None
):
if
min_value
is
None
:
min_value
=
divisor
new_v
=
max
(
min_value
,
int
(
v
+
divisor
/
2
)
//
divisor
*
divisor
)
if
new_v
<
0.9
*
v
:
new_v
+=
divisor
return
new_v
def
se_block
(
self
,
input
,
num_out_filter
,
ratio
=
4
,
name
=
None
):
num_mid_filter
=
num_out_filter
//
ratio
pool
=
fluid
.
layers
.
pool2d
(
input
=
input
,
pool_type
=
'avg'
,
global_pooling
=
True
,
use_cudnn
=
False
)
conv1
=
fluid
.
layers
.
conv2d
(
input
=
pool
,
filter_size
=
1
,
num_filters
=
num_mid_filter
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
name
+
'_1_weights'
),
bias_attr
=
ParamAttr
(
name
=
name
+
'_1_offset'
))
conv2
=
fluid
.
layers
.
conv2d
(
input
=
conv1
,
filter_size
=
1
,
num_filters
=
num_out_filter
,
act
=
'hard_sigmoid'
,
param_attr
=
ParamAttr
(
name
=
name
+
'_2_weights'
),
bias_attr
=
ParamAttr
(
name
=
name
+
'_2_offset'
))
scale
=
fluid
.
layers
.
elementwise_mul
(
x
=
input
,
y
=
conv2
,
axis
=
0
)
return
scale
def
residual_unit
(
self
,
input
,
num_in_filter
,
num_mid_filter
,
num_out_filter
,
stride
,
filter_size
,
act
=
None
,
use_se
=
False
,
name
=
None
,
short
=
False
):
if
not
short
:
conv0
=
self
.
conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
num_filters
=
num_mid_filter
,
stride
=
1
,
padding
=
0
,
if_act
=
True
,
act
=
act
,
name
=
name
+
'_expand'
)
else
:
conv0
=
input
conv1
=
self
.
conv_bn_layer
(
input
=
conv0
,
filter_size
=
filter_size
,
num_filters
=
num_mid_filter
,
stride
=
stride
,
padding
=
int
((
filter_size
-
1
)
//
2
),
if_act
=
True
,
act
=
act
,
num_groups
=
num_mid_filter
,
use_cudnn
=
False
,
name
=
name
+
'_depthwise'
)
if
use_se
:
conv1
=
self
.
se_block
(
input
=
conv1
,
num_out_filter
=
num_mid_filter
,
name
=
name
+
'_se'
)
conv2
=
self
.
conv_bn_layer
(
input
=
conv1
,
filter_size
=
1
,
num_filters
=
num_out_filter
,
stride
=
1
,
padding
=
0
,
if_act
=
False
,
name
=
name
+
'_linear'
,
res_last_bn_init
=
True
)
if
num_in_filter
!=
num_out_filter
or
stride
!=
1
:
return
conv2
else
:
return
fluid
.
layers
.
elementwise_add
(
x
=
input
,
y
=
conv2
,
act
=
None
)
def
SlimMobileNet_v1
(
token
):
token
=
[
5
,
3
,
3
,
7
,
3
,
3
,
5
,
7
,
3
,
3
,
3
,
3
,
3
,
3
,
7
,
3
,
5
,
3
,
3
,
3
,
3
,
3
,
3
,
6
,
3
,
3
,
3
,
3
,
4
,
4
,
4
,
6
,
4
,
3
,
4
,
3
,
6
,
4
,
3
,
3
,
2
,
2
,
2
,
2
,
4
]
model
=
SlimMobileNet
(
model_name
=
'large'
,
scale
=
1.0
,
token
=
token
)
return
model
def
SlimMobileNet_v2
(
token
):
token
=
[
5
,
3
,
5
,
7
,
3
,
3
,
7
,
3
,
5
,
3
,
3
,
7
,
3
,
3
,
3
,
5
,
5
,
5
,
3
,
3
,
3
,
3
,
4
,
6
,
3
,
3
,
6
,
3
,
4
,
4
,
3
,
4
,
4
,
4
,
3
,
6
,
6
,
4
,
3
,
3
,
2
,
2
,
3
,
2
,
4
]
model
=
SlimMobileNet
(
model_name
=
'large'
,
scale
=
1.0
,
token
=
token
)
return
model
def
SlimMobileNet_v3
(
token
):
token
=
[
3
,
3
,
3
,
3
,
5
,
3
,
7
,
7
,
7
,
3
,
3
,
7
,
5
,
3
,
5
,
7
,
5
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
4
,
3
,
4
,
3
,
6
,
4
,
4
,
4
,
4
,
6
,
3
,
6
,
4
,
6
,
3
,
2
,
2
,
3
,
2
,
4
]
model
=
SlimMobileNet
(
model_name
=
'large'
,
scale
=
1.0
,
token
=
token
)
return
model
def
SlimMobileNet_v4
(
token
):
token
=
[
3
,
3
,
3
,
3
,
5
,
3
,
3
,
5
,
7
,
3
,
5
,
5
,
5
,
3
,
3
,
7
,
3
,
5
,
3
,
3
,
3
,
3
,
4
,
6
,
3
,
4
,
4
,
6
,
4
,
6
,
4
,
6
,
4
,
6
,
4
,
4
,
6
,
6
,
6
,
4
,
2
,
3
,
3
,
3
,
4
]
model
=
SlimMobileNet
(
model_name
=
'large'
,
scale
=
1.0
,
token
=
token
)
return
model
def
SlimMobileNet_v5
(
token
):
token
=
[
7
,
7
,
3
,
5
,
7
,
3
,
5
,
3
,
7
,
5
,
3
,
3
,
5
,
3
,
7
,
5
,
7
,
7
,
5
,
3
,
3
,
3
,
6
,
3
,
4
,
6
,
3
,
6
,
6
,
3
,
6
,
4
,
6
,
6
,
4
,
3
,
6
,
6
,
6
,
6
,
4
,
4
,
4
,
4
,
4
]
model
=
SlimMobileNet
(
model_name
=
'large'
,
scale
=
1.0
,
token
=
token
)
return
model
if
__name__
==
"__main__"
:
pass
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录