未验证 提交 a4f0a1dd 编写于 作者: L Liufang Sang 提交者: GitHub

add quantization result in model zoo (#77)

上级 b1a8fa72
...@@ -4,17 +4,309 @@ ...@@ -4,17 +4,309 @@
### 1.1 量化 ### 1.1 量化
| 模型 | 压缩方法 | Top-1/Top-5 Acc | 模型体积(MB) | 下载 | | 模型 | 压缩方法 | Top-1/Top-5 Acc | 模型体积(MB) | TensorRT时延(V100, ms) | 下载 |
|:--:|:---:|:--:|:--:|:--:| |:--:|:---:|:--:|:--:|:--:|:--:|
|MobileNetV1|-|70.99%/89.68%| xx | [下载链接]() | |MobileNetV1|-|70.99%/89.68%| 17 | -| [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) |
|MobileNetV1|quant_post|xx%/xx%| xx | [下载链接]() | |MobileNetV1|quant_post|70.18%/89.25% (-0.81%/-0.43%)| 4.4 | - | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_quant_post.tar) |
|MobileNetV1|quant_aware|xx%/xx%| xx | [下载链接]() | |MobileNetV1|quant_aware|70.60%/89.57% (-0.39%/-0.11%)| 4.4 | -| [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_quant_aware.tar) |
| MobileNetV2 | - |72.15%/90.65%| xx | [下载链接]() | | MobileNetV2 | - |72.15%/90.65%| 15 | - | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2 | quant_post |xx%/xx%| xx | [下载链接]() | | MobileNetV2 | quant_post | 71.15%/90.11% (-1%/-0.54%)| 4.0 | - | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_quant_post.tar) |
| MobileNetV2 | quant_aware |xx%/xx%| xx | [下载链接]() | | MobileNetV2 | quant_aware |72.05%/90.63% (-0.1%/-0.02%)| 4.0 | - | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_quant_aware.tar) |
|ResNet50|-|76.50%/93.00%| xx | [下载链接]() | |ResNet50|-|76.50%/93.00%| 99 | 2.71 | [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar) |
|ResNet50|quant_post|xx%/xx%| xx | [下载链接]() | |ResNet50|quant_post|76.33%/93.02% (-0.17%/+0.02%)| 25.1| 1.19 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet50_quant_post.tar) |
|ResNet50|quant_aware|xx%/xx%| xx | [下载链接]() | |ResNet50|quant_aware| 76.48%/93.11% (-0.02%/+0.11%)| 25.1 | 1.17 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet50_quant_awre.tar) |
<table border=0 cellpadding=0 cellspacing=0 width=861 style='border-collapse:
collapse;table-layout:fixed;width:644pt'>
<col width=87 style='width:65pt'>
<col width=124 style='mso-width-source:userset;mso-width-alt:3968;width:93pt'>
<col width=128 style='mso-width-source:userset;mso-width-alt:4096;width:96pt'>
<col width=87 span=6 style='width:65pt'>
<tr height=21 style='height:16.0pt'>
<td colspan=3 height=21 class=xl63 width=339 style='height:16.0pt;width:254pt'>分类模型Lite时延(ms)</td>
<td colspan=3 class=xl63 width=261 style='width:195pt'>armv7</td>
<td colspan=3 class=xl63 width=261 style='width:195pt'>armv8</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl63 style='height:16.0pt'>设备</td>
<td class=xl63>模型类型</td>
<td class=xl63>压缩策略</td>
<td class=xl63>Thread 1</td>
<td class=xl63>Thread 2</td>
<td class=xl63>Thread 4</td>
<td class=xl63>Thread 1</td>
<td class=xl63>Thread 2</td>
<td class=xl63>Thread 4</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td rowspan=9 height=189 class=xl63 style='height:144.0pt'>高通835</td>
<td rowspan=3 class=xl63>MobileNetV1</td>
<td class=xl63>FP32 baseline</td>
<td class=xl63>96.1942</td>
<td class=xl63>53.2058</td>
<td class=xl63>32.4468</td>
<td class=xl63>88.4955</td>
<td class=xl63>47.95</td>
<td class=xl63>27.5189</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl63 style='height:16.0pt'>quant_aware</td>
<td class=xl63>60.8186</td>
<td class=xl63>32.1931</td>
<td class=xl63>16.4275</td>
<td class=xl63>56.4311</td>
<td class=xl63>29.5446</td>
<td class=xl63>15.1053</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl63 style='height:16.0pt'>quant_post</td>
<td class=xl63>60.5615</td>
<td class=xl63>32.4016</td>
<td class=xl63>16.6596</td>
<td class=xl63>56.5266</td>
<td class=xl63>29.7178</td>
<td class=xl63>15.1459</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td rowspan=3 height=63 class=xl63 style='height:48.0pt'>MobileNetV2</td>
<td class=xl63>FP32 baseline</td>
<td class=xl63>65.715</td>
<td class=xl63>38.1346</td>
<td class=xl63>25.155</td>
<td class=xl63>61.3593</td>
<td class=xl63>36.2038</td>
<td class=xl63>22.849</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl63 style='height:16.0pt'>quant_aware</td>
<td class=xl63>48.3655</td>
<td class=xl63>30.2021</td>
<td class=xl63>21.9303</td>
<td class=xl63>46.1487</td>
<td class=xl63>27.3146</td>
<td class=xl63>18.3053</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl63 style='height:16.0pt'>quant_post</td>
<td class=xl63>48.3495</td>
<td class=xl63>30.3069</td>
<td class=xl63>22.1506</td>
<td class=xl63>45.8715</td>
<td class=xl63>27.4105</td>
<td class=xl63>18.2223</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td rowspan=3 height=63 class=xl63 style='height:48.0pt'>ResNet50</td>
<td class=xl63>FP32 baseline</td>
<td class=xl63>526.811</td>
<td class=xl63>319.6486</td>
<td class=xl63>205.8345</td>
<td class=xl63>506.1138</td>
<td class=xl63>335.1584</td>
<td class=xl63>214.8936</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl63 style='height:16.0pt'>quant_aware</td>
<td class=xl63>475.4538</td>
<td class=xl63>256.8672</td>
<td class=xl63>139.699</td>
<td class=xl63>461.7344</td>
<td class=xl63>247.9506</td>
<td class=xl63>145.9847</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl63 style='height:16.0pt'>quant_post</td>
<td class=xl63>476.0507</td>
<td class=xl63>256.5963</td>
<td class=xl63>139.7266</td>
<td class=xl63>461.9176</td>
<td class=xl63>248.3795</td>
<td class=xl63>149.353</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td rowspan=9 height=189 class=xl63 style='height:144.0pt'>高通855</td>
<td rowspan=3 class=xl63>MobileNetV1</td>
<td class=xl63>FP32 baseline</td>
<td class=xl63>33.5086</td>
<td class=xl63>19.5773</td>
<td class=xl63>11.7534</td>
<td class=xl63>31.3474</td>
<td class=xl63>18.5382</td>
<td class=xl63>10.0811</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl63 style='height:16.0pt'>quant_aware</td>
<td class=xl63>36.7067</td>
<td class=xl63>21.628</td>
<td class=xl63>11.0372</td>
<td class=xl63>14.0238</td>
<td class=xl63>8.199</td>
<td class=xl63>4.2588</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl63 style='height:16.0pt'>quant_post</td>
<td class=xl63>37.0498</td>
<td class=xl63>21.7081</td>
<td class=xl63>11.0779</td>
<td class=xl63>14.0947</td>
<td class=xl63>8.1926</td>
<td class=xl63>4.2934</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td rowspan=3 height=63 class=xl63 style='height:48.0pt'>MobileNetV2</td>
<td class=xl63>FP32 baseline</td>
<td class=xl63>25.0396</td>
<td class=xl63>15.2862</td>
<td class=xl63>9.6609</td>
<td class=xl63>22.909</td>
<td class=xl63>14.1797</td>
<td class=xl63>8.8325</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl63 style='height:16.0pt'>quant_aware</td>
<td class=xl63>28.1583</td>
<td class=xl63>18.3317</td>
<td class=xl63>11.8103</td>
<td class=xl63>16.9158</td>
<td class=xl63>11.1606</td>
<td class=xl63>7.4148</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl63 style='height:16.0pt'>quant_post</td>
<td class=xl63>28.1631</td>
<td class=xl63>18.3917</td>
<td class=xl63>11.8333</td>
<td class=xl63>16.9399</td>
<td class=xl63>11.1772</td>
<td class=xl63>7.4176</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td rowspan=3 height=63 class=xl63 style='height:48.0pt'>ResNet50</td>
<td class=xl63>FP32 baseline</td>
<td class=xl63>185.3705</td>
<td class=xl63>113.0825</td>
<td class=xl63>87.0741</td>
<td class=xl63>177.7367</td>
<td class=xl63>110.0433</td>
<td class=xl63>74.4114</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl63 style='height:16.0pt'>quant_aware</td>
<td class=xl63>327.6883</td>
<td class=xl63>202.4536</td>
<td class=xl63>106.243</td>
<td class=xl63>243.5621</td>
<td class=xl63>150.0542</td>
<td class=xl63>78.4205</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl63 style='height:16.0pt'>quant_post</td>
<td class=xl63>328.2683</td>
<td class=xl63>201.9937</td>
<td class=xl63>106.744</td>
<td class=xl63>242.6397</td>
<td class=xl63>150.0338</td>
<td class=xl63>79.8659</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td rowspan=9 height=189 class=xl63 style='height:144.0pt'>麒麟970</td>
<td rowspan=3 class=xl63>MobileNetV1</td>
<td class=xl63>FP32 baseline</td>
<td class=xl63>101.2455</td>
<td class=xl63>56.4053</td>
<td class=xl63>35.6484</td>
<td class=xl63>94.8985</td>
<td class=xl63>51.7251</td>
<td class=xl63>31.9511</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl63 style='height:16.0pt'>quant_aware</td>
<td class=xl63>62.5012</td>
<td class=xl63>32.1863</td>
<td class=xl63>16.6018</td>
<td class=xl63>57.7477</td>
<td class=xl63>29.2116</td>
<td class=xl63>15.0703</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl63 style='height:16.0pt'>quant_post</td>
<td class=xl63>62.4412</td>
<td class=xl63>32.2585</td>
<td class=xl63>16.6215</td>
<td class=xl63>57.825</td>
<td class=xl63>29.2573</td>
<td class=xl63>15.1206</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td rowspan=3 height=63 class=xl63 style='height:48.0pt'>MobileNetV2</td>
<td class=xl63>FP32 baseline</td>
<td class=xl63>70.4176</td>
<td class=xl63>42.0795</td>
<td class=xl63>25.1939</td>
<td class=xl63>68.9597</td>
<td class=xl63>39.2145</td>
<td class=xl63>22.6617</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl63 style='height:16.0pt'>quant_aware</td>
<td class=xl63>52.9961</td>
<td class=xl63>31.5323</td>
<td class=xl63>22.1447</td>
<td class=xl63>49.4858</td>
<td class=xl63>28.0856</td>
<td class=xl63>18.7287</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl63 style='height:16.0pt'>quant_post</td>
<td class=xl63>53.0961</td>
<td class=xl63>31.7987</td>
<td class=xl63>21.8334</td>
<td class=xl63>49.383</td>
<td class=xl63>28.2358</td>
<td class=xl63>18.3642</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td rowspan=3 height=63 class=xl63 style='height:48.0pt'>ResNet50</td>
<td class=xl63>FP32 baseline</td>
<td class=xl63>586.8943</td>
<td class=xl63>344.0858</td>
<td class=xl63>228.2293</td>
<td class=xl63>573.3344</td>
<td class=xl63>351.4332</td>
<td class=xl63>225.8006</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl63 style='height:16.0pt'>quant_aware</td>
<td class=xl63>488.361</td>
<td class=xl63>260.1697</td>
<td class=xl63>142.416</td>
<td class=xl63>479.5668</td>
<td class=xl63>249.8485</td>
<td class=xl63>138.1742</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl63 style='height:16.0pt'>quant_post</td>
<td class=xl63>489.6188</td>
<td class=xl63>258.3279</td>
<td class=xl63>142.6063</td>
<td class=xl63>480.0064</td>
<td class=xl63>249.5339</td>
<td class=xl63>138.5284</td>
</tr>
<![if supportMisalignedColumns]>
<tr height=0 style='display:none'>
<td width=87 style='width:65pt'></td>
<td width=124 style='width:93pt'></td>
<td width=128 style='width:96pt'></td>
<td width=87 style='width:65pt'></td>
<td width=87 style='width:65pt'></td>
<td width=87 style='width:65pt'></td>
<td width=87 style='width:65pt'></td>
<td width=87 style='width:65pt'></td>
<td width=87 style='width:65pt'></td>
</tr>
<![endif]>
</table>
...@@ -60,14 +352,16 @@ ...@@ -60,14 +352,16 @@
数据集: COCO 2017 数据集: COCO 2017
| 模型 | 压缩方法 | 数据集 | Image/GPU | 输入608 Box AP | 输入416 Box AP | 输入320 Box AP | 模型体积(MB) | 下载 | | 模型 | 压缩方法 | 数据集 | Image/GPU | 输入608 Box AP | 输入416 Box AP | 输入320 Box AP | 模型体积(MB) | TensorRT时延(V100, ms) | 下载 |
| :----------------------------: | :---------: | :----: | :-------: | :------------: | :------------: | :------------: | :------------: | :----------: | | :----------------------------: | :---------: | :----: | :-------: | :------------: | :------------: | :------------: | :------------: | :----------: |:----------: |
| MobileNet-V1-YOLOv3 | - | COCO | 8 | 29.3 | 29.3 | 27.1 | xx | [下载链接]() | | MobileNet-V1-YOLOv3 | - | COCO | 8 | 29.3 | 29.3 | 27.1 | 95 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| MobileNet-V1-YOLOv3 | quant_post | COCO | 8 | xx | xx | xx | xx | [下载链接]() | | MobileNet-V1-YOLOv3 | quant_post | COCO | 8 | 27.9 (-1.4)| 28.0 (-1.3) | 26.0 (-1.0) | 25 | - | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_post.tar) |
| MobileNet-V1-YOLOv3 | quant_aware | COCO | 8 | xx | xx | xx | xx | [下载链接]() | | MobileNet-V1-YOLOv3 | quant_aware | COCO | 8 | 28.1 (-1.2)| 28.2 (-1.1) | 25.8 (-1.2) | 26.3 | - | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_coco_quant_aware.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | - | COCO | 8 | 41.4 | xx | xx | xx | [下载链接]() | | R34-YOLOv3 | - | COCO | 8 | 36.2 | 34.3 | 31.4 | 162 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | quant_post | COCO | 8 | xx | xx | xx | xx | [下载链接]() | | R34-YOLOv3 | quant_post | COCO | 8 | 35.7 (-0.5) | - | - | 42.7 | - | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_post.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | quant_aware | COCO | 8 | xx | xx | xx | xx | [下载链接]() | | R34-YOLOv3 | quant_aware | COCO | 8 | 35.2 (-1.0) | 33.3 (-1.0) | 30.3 (-1.1)| 44 | - | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_aware.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | - | COCO | 8 | 41.4 | - | - | 177 | 18.56 |[下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | quant_aware | COCO | 8 | 40.6 (-0.8) | 37.5 | 34.1 | 66 | 14.64 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_quant_aware.tar) |
...@@ -75,17 +369,17 @@ ...@@ -75,17 +369,17 @@
| 模型 | 压缩方法 | Image/GPU | 输入尺寸 | Easy/Medium/Hard | 模型体积(MB) | 下载 | | 模型 | 压缩方法 | Image/GPU | 输入尺寸 | Easy/Medium/Hard | 模型体积(MB) | 下载 |
| :------------: | :---------: | :-------: | :------: | :---------------: | :------------: | :----------: | | :------------: | :---------: | :-------: | :------: | :-----------------------------: | :------------: | :----------------------------------------------------------: |
| BlazeFace | - | 8 | 640 | 0.915/0.892/0.797 | xx | [下载链接]() | | BlazeFace | - | 8 | 640 | 91.5/89.2/79.7 | 815 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_original.tar) |
| BlazeFace | quant_post | 8 | 640 | xx/xx/xx | xx | [下载链接]() | | BlazeFace | quant_post | 8 | 640 | 87.8/85.1/74.9 (-3.7/-4.1/-4.8) | 228 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_origin_quant_post.tar) |
| BlazeFace | quant_aware | 8 | 640 | xx/xx/xx | xx | [下载链接]() | | BlazeFace | quant_aware | 8 | 640 | 90.5/87.9/77.6 (-1.0/-1.3/-2.1) | 228 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_origin_quant_aware.tar) |
| BlazeFace-Lite | - | 8 | 640 | 0.909/0.885/0.781 | xx | [下载链接]() | | BlazeFace-Lite | - | 8 | 640 | 90.9/88.5/78.1 | 711 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_lite.tar) |
| BlazeFace-Lite | quant_post | 8 | 640 | xx/xx/xx | xx | [下载链接]() | | BlazeFace-Lite | quant_post | 8 | 640 | 89.4/86.7/75.7 (-1.5/-1.8/-2.4) | 211 | [下载链接]((https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_lite_quant_post.tar)) |
| BlazeFace-Lite | quant_aware | 8 | 640 | xx/xx/xx | xx | [下载链接]() | | BlazeFace-Lite | quant_aware | 8 | 640 | 89.7/87.3/77.0 (-1.2/-1.2/-1.1) | 211 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_lite_quant_aware.tar) |
| BlazeFace-NAS | - | 8 | 640 | 0.837/0.807/0.658 | xx | [下载链接]() | | BlazeFace-NAS | - | 8 | 640 | 83.7/80.7/65.8 | 244 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas.tar) |
| BlazeFace-NAS | quant_post | 8 | 640 | xx/xx/xx | xx | [下载链接]() | | BlazeFace-NAS | quant_post | 8 | 640 | 81.6/78.3/63.6 (-2.1/-2.4/-2.2) | 71 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_nas_quant_post.tar) |
| BlazeFace-NAS | quant_aware | 8 | 640 | xx/xx/xx | xx | [下载链接]() | | BlazeFace-NAS | quant_aware | 8 | 640 | 83.1/79.7/64.2 (-0.6/-1.0/-1.6) | 71 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_nas_quant_aware.tar) |
### 2.2 剪裁 ### 2.2 剪裁
...@@ -125,14 +419,225 @@ ...@@ -125,14 +419,225 @@
### 3.1 量化 ### 3.1 量化
| 模型 | 压缩方法 | mIoU | 模型体积(MB) | 下载 | | 模型 | 压缩方法 | mIoU | 模型体积(MB) | 下载 |
| :--------------------: | :---------: | :---: | :------------: | :----------: | | :--------------------: | :---------: | :-----------: | :------------: | :----------------------------------------------------------: |
| DeepLabv3+/MobileNetv1 | - | 63.26 | xx | [下载链接]() | | DeepLabv3+/MobileNetv1 | - | 63.26 | 6.6 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv1.tar ) |
| DeepLabv3+/MobileNetv1 | quant_post | xx | xx | [下载链接]() | | DeepLabv3+/MobileNetv1 | quant_post | 58.63 (-4.63) | 1.8 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv1_2049x1025_quant_post.tar) |
| DeepLabv3+/MobileNetv1 | quant_aware | xx | xx | [下载链接]() | | DeepLabv3+/MobileNetv1 | quant_aware | 62.03 (-1.23) | 1.8 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv1_2049x1025_quant_aware.tar) |
| DeepLabv3+/MobileNetv2 | - | 69.81 | xx | [下载链接]() | | DeepLabv3+/MobileNetv2 | - | 69.81 | 7.4 | [下载链接](https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz) |
| DeepLabv3+/MobileNetv2 | quant_post | xx | xx | [下载链接]() | | DeepLabv3+/MobileNetv2 | quant_post | 67.59 (-2.22) | 2.1 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv2_2049x1025_quant_post.tar) |
| DeepLabv3+/MobileNetv2 | quant_aware | xx | xx | [下载链接]() | | DeepLabv3+/MobileNetv2 | quant_aware | 68.33 (-1.48) | 2.1 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv2_2049x1025_quant_aware.tar) |
<br/>
<table border=0 cellpadding=0 cellspacing=0 width=841 style='border-collapse:
collapse;table-layout:fixed;width:629pt'>
<col width=87 style='width:65pt'>
<col width=105 style='mso-width-source:userset;mso-width-alt:3370;width:79pt'>
<col width=127 style='mso-width-source:userset;mso-width-alt:4053;width:95pt'>
<col width=87 span=6 style='width:65pt'>
<tr height=21 style='height:16.0pt'>
<td colspan=3 height=21 class=xl65 width=319 style='height:16.0pt;width:239pt'>图像分割模型Lite时延(ms),
输入尺寸769x769</td>
<td colspan=3 class=xl65 width=261 style='width:195pt'>armv7</td>
<td colspan=3 class=xl65 width=261 style='width:195pt'>armv8</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl65 style='height:16.0pt'>设备</td>
<td class=xl65>模型类型</td>
<td class=xl65>压缩策略</td>
<td class=xl65>Thread 1</td>
<td class=xl65>Thread 2</td>
<td class=xl65>Thread 4</td>
<td class=xl65>Thread 1</td>
<td class=xl65>Thread 2</td>
<td class=xl65>Thread 4</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td rowspan=6 height=126 class=xl65 style='height:96.0pt'>高通835</td>
<td rowspan=3 class=xl66 width=105 style='width:79pt'>Deeplabv3- MobileNetV1</td>
<td class=xl65>FP32 baseline</td>
<td class=xl65>1227.9894</td>
<td class=xl65>734.1922</td>
<td class=xl65>527.9592</td>
<td class=xl65>1109.96</td>
<td class=xl65>699.3818</td>
<td class=xl65>479.0818</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl65 style='height:16.0pt'>quant_aware</td>
<td class=xl65>848.6544</td>
<td class=xl65>512.785</td>
<td class=xl65>382.9915</td>
<td class=xl65>752.3573</td>
<td class=xl65>455.0901</td>
<td class=xl65>307.8808</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl65 style='height:16.0pt'>quant_post</td>
<td class=xl65>840.2323</td>
<td class=xl65>510.103</td>
<td class=xl65>371.9315</td>
<td class=xl65>748.9401</td>
<td class=xl65>452.1745</td>
<td class=xl65>309.2084</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td rowspan=3 height=63 class=xl66 width=105 style='height:48.0pt;width:79pt'>Deeplabv3-MobileNetV2</td>
<td class=xl65>FP32 baseline</td>
<td class=xl65>1282.8126</td>
<td class=xl65>793.2064</td>
<td class=xl65>653.6538</td>
<td class=xl65>1193.9908</td>
<td class=xl65>737.1827</td>
<td class=xl65>593.4522</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl65 style='height:16.0pt'>quant_aware</td>
<td class=xl65>976.0495</td>
<td class=xl65>659.0541</td>
<td class=xl65>513.4279</td>
<td class=xl65>892.1468</td>
<td class=xl65>582.9847</td>
<td class=xl65>484.7512</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl65 style='height:16.0pt'>quant_post</td>
<td class=xl65>981.44</td>
<td class=xl65>658.4969</td>
<td class=xl65>538.6166</td>
<td class=xl65>885.3273</td>
<td class=xl65>586.1284</td>
<td class=xl65>484.0018</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td rowspan=6 height=126 class=xl65 style='height:96.0pt'>高通855</td>
<td rowspan=3 class=xl66 width=105 style='width:79pt'>Deeplabv3-MobileNetV1</td>
<td class=xl65>FP32 baseline</td>
<td class=xl65>568.8748</td>
<td class=xl65>339.8578</td>
<td class=xl65>278.6316</td>
<td class=xl65>420.6031</td>
<td class=xl65>281.3197</td>
<td class=xl65>217.5222</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl65 style='height:16.0pt'>quant_aware</td>
<td class=xl65>608.7578</td>
<td class=xl65>347.2087</td>
<td class=xl65>260.653</td>
<td class=xl65>241.2394</td>
<td class=xl65>177.3456</td>
<td class=xl65>143.9178</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl65 style='height:16.0pt'>quant_post</td>
<td class=xl65>609.0142</td>
<td class=xl65>347.3784</td>
<td class=xl65>259.9825</td>
<td class=xl65>239.4103</td>
<td class=xl65>180.1894</td>
<td class=xl65>139.9178</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td rowspan=3 height=63 class=xl66 width=105 style='height:48.0pt;width:79pt'>Deeplabv3-MobileNetV2</td>
<td class=xl65>FP32 baseline</td>
<td class=xl65>639.4425</td>
<td class=xl65>390.1851</td>
<td class=xl65>322.7014</td>
<td class=xl65>477.7667</td>
<td class=xl65>339.7411</td>
<td class=xl65>262.2847</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl65 style='height:16.0pt'>quant_aware</td>
<td class=xl65>703.7275</td>
<td class=xl65>497.689</td>
<td class=xl65>417.1296</td>
<td class=xl65>394.3586</td>
<td class=xl65>300.2503</td>
<td class=xl65>239.9204</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl65 style='height:16.0pt'>quant_post</td>
<td class=xl65>705.7589</td>
<td class=xl65>474.4076</td>
<td class=xl65>427.2951</td>
<td class=xl65>394.8352</td>
<td class=xl65>297.4035</td>
<td class=xl65>264.6724</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td rowspan=6 height=126 class=xl65 style='height:96.0pt'>麒麟970</td>
<td rowspan=3 class=xl66 width=105 style='width:79pt'>Deeplabv3-MobileNetV1</td>
<td class=xl65>FP32 baseline</td>
<td class=xl65>1682.1792</td>
<td class=xl65>1437.9774</td>
<td class=xl65>1181.0246</td>
<td class=xl65>1261.6739</td>
<td class=xl65>1068.6537</td>
<td class=xl65>690.8225</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl65 style='height:16.0pt'>quant_aware</td>
<td class=xl65>1062.3394</td>
<td class=xl65>1248.1014</td>
<td class=xl65>878.3157</td>
<td class=xl65>774.6356</td>
<td class=xl65>710.6277</td>
<td class=xl65>528.5376</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl65 style='height:16.0pt'>quant_post</td>
<td class=xl65>1109.1917</td>
<td class=xl65>1339.6218</td>
<td class=xl65>866.3587</td>
<td class=xl65>771.5164</td>
<td class=xl65>716.5255</td>
<td class=xl65>500.6497</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td rowspan=3 height=63 class=xl66 width=105 style='height:48.0pt;width:79pt'>Deeplabv3-MobileNetV2</td>
<td class=xl65>FP32 baseline</td>
<td class=xl65>1771.1301</td>
<td class=xl65>1746.0569</td>
<td class=xl65>1222.4805</td>
<td class=xl65>1448.9739</td>
<td class=xl65>1192.4491</td>
<td class=xl65>760.606</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl65 style='height:16.0pt'>quant_aware</td>
<td class=xl65>1320.2905</td>
<td class=xl65>921.4522</td>
<td class=xl65>676.0732</td>
<td class=xl65>1145.8801</td>
<td class=xl65>821.5685</td>
<td class=xl65>590.1713</td>
</tr>
<tr height=21 style='height:16.0pt'>
<td height=21 class=xl65 style='height:16.0pt'>quant_post</td>
<td class=xl65>1320.386</td>
<td class=xl65>918.5328</td>
<td class=xl65>672.2481</td>
<td class=xl65>1020.753</td>
<td class=xl65>820.094</td>
<td class=xl65>591.4114</td>
</tr>
<![if supportMisalignedColumns]>
<tr height=0 style='display:none'>
<td width=87 style='width:65pt'></td>
<td width=105 style='width:79pt'></td>
<td width=127 style='width:95pt'></td>
<td width=87 style='width:65pt'></td>
<td width=87 style='width:65pt'></td>
<td width=87 style='width:65pt'></td>
<td width=87 style='width:65pt'></td>
<td width=87 style='width:65pt'></td>
<td width=87 style='width:65pt'></td>
</tr>
<![endif]>
</table>
### 3.2 剪裁 ### 3.2 剪裁
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册