未验证 提交 9e23857b 编写于 作者: L Liufang Sang 提交者: GitHub

remove quant_post for paddle 1.6 (#121)

上级 a784e4fe
......@@ -12,5 +12,5 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from .quanter import quant_aware, quant_post, convert
from .quanter import quant_aware, convert
from .quant_embedding import quant_embedding
......@@ -13,8 +13,6 @@
# limitations under the License.
import copy
import logging
import paddle
import paddle.fluid as fluid
from paddle.fluid.framework import IrGraph
......@@ -22,41 +20,22 @@ from paddle.fluid.contrib.slim.quantization import QuantizationTransformPass
from paddle.fluid.contrib.slim.quantization import QuantizationFreezePass
from paddle.fluid.contrib.slim.quantization import ConvertToInt8Pass
from paddle.fluid.contrib.slim.quantization import TransformForMobilePass
from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization
from paddle.fluid.contrib.slim.quantization import AddQuantDequantPass
from paddle.fluid import core
from ..common import get_logger
_logger = get_logger(__name__, level=logging.INFO)
WEIGHT_QUANTIZATION_TYPES = [
'abs_max', 'channel_wise_abs_max', 'range_abs_max',
'moving_average_abs_max'
]
WEIGHT_QUANTIZATION_TYPES_TENSORRT = ['channel_wise_abs_max']
ACTIVATION_QUANTIZATION_TYPES = [
'abs_max', 'range_abs_max', 'moving_average_abs_max'
]
ACTIVATION_QUANTIZATION_TYPES_TENSORRT = [
'range_abs_max', 'moving_average_abs_max'
]
VALID_DTYPES = ['int8']
TRANSFORM_PASS_OP_TYPES = QuantizationTransformPass._supported_quantizable_op_type
QUANT_DEQUANT_PASS_OP_TYPES = AddQuantDequantPass._supported_quantizable_op_type + \
AddQuantDequantPass._activation_type
TENSORRT_OP_TYPES = [
'mul', 'conv2d', 'pool2d', 'depthwise_conv2d', 'elementwise_add',
'leaky_relu'
]
_quant_config_default = {
# weight quantize type, default is 'channel_wise_abs_max'
'weight_quantize_type': 'channel_wise_abs_max',
# activation quantize type, default is 'moving_average_abs_max'
'activation_quantize_type': 'moving_average_abs_max',
# weight quantize type, default is 'abs_max'
'weight_quantize_type': 'abs_max',
# activation quantize type, default is 'abs_max'
'activation_quantize_type': 'abs_max',
# weight quantize bit num, default is 8
'weight_bits': 8,
# activation quantize bit num, default is 8
......@@ -71,18 +50,14 @@ _quant_config_default = {
'window_size': 10000,
# The decay coefficient of moving average, default is 0.9
'moving_rate': 0.9,
# if True, 'quantize_op_types' will be TENSORRT_OP_TYPES
'for_tensorrt': False,
# if True, 'quantoze_op_types' will be TRANSFORM_PASS_OP_TYPES + QUANT_DEQUANT_PASS_OP_TYPES
'is_full_quantize': False
}
def _parse_configs(user_config):
"""
check if user's configs are valid.
check user configs is valid, and set default value if user not config.
Args:
user_config(dict): user's config.
user_config(dict):the config of user.
Return:
configs(dict): final configs will be used.
"""
......@@ -90,26 +65,12 @@ def _parse_configs(user_config):
configs = copy.deepcopy(_quant_config_default)
configs.update(user_config)
assert isinstance(configs['for_tensorrt'], bool) and isinstance(
configs['is_full_quantize'],
bool), "'for_tensorrt' and 'is_full_quantize' must both be bool'"
# check if configs is valid
if configs['for_tensorrt']:
weight_types = WEIGHT_QUANTIZATION_TYPES_TENSORRT
activation_types = ACTIVATION_QUANTIZATION_TYPES_TENSORRT
platform = 'TensorRT'
else:
weight_types = WEIGHT_QUANTIZATION_TYPES
activation_types = WEIGHT_QUANTIZATION_TYPES
platform = 'PaddleLite'
assert configs['weight_quantize_type'] in weight_types, \
"Unknown weight_quantize_type: {}. {} only supports {} ".format(configs['weight_quantize_type'],
platform, weight_types)
# check configs is valid
assert configs['weight_quantize_type'] in WEIGHT_QUANTIZATION_TYPES, \
"Unknown weight_quantize_type: '%s'. It can only be " + " ".join(WEIGHT_QUANTIZATION_TYPES)
assert configs['activation_quantize_type'] in activation_types, \
"Unknown activation_quantize_type: {}. {} only supports {}".format(configs['activation_quantize_type'],
platform, activation_types)
assert configs['activation_quantize_type'] in ACTIVATION_QUANTIZATION_TYPES, \
"Unknown activation_quantize_type: '%s'. It can only be " + " ".join(ACTIVATION_QUANTIZATION_TYPES)
assert isinstance(configs['weight_bits'], int), \
"weight_bits must be int value."
......@@ -123,25 +84,12 @@ def _parse_configs(user_config):
assert (configs['activation_bits'] >= 1 and configs['activation_bits'] <= 16), \
"activation_bits should be between 1 and 16."
assert isinstance(configs['not_quant_pattern'], (list, str)), \
"not_quant_pattern must be list or str"
assert isinstance(configs['not_quant_pattern'], list), \
"not_quant_pattern must be a list"
assert isinstance(configs['quantize_op_types'], list), \
"quantize_op_types must be a list"
if configs['for_tensorrt']:
configs['quantize_op_types'] = TENSORRT_OP_TYPES
elif configs['is_full_quantize']:
configs[
'quantize_op_types'] = TRANSFORM_PASS_OP_TYPES + QUANT_DEQUANT_PASS_OP_TYPES
else:
for op_type in configs['quantize_op_types']:
assert (op_type in QUANT_DEQUANT_PASS_OP_TYPES) or (
op_type in TRANSFORM_PASS_OP_TYPES), "{} is not support, \
now support op types are {}".format(
op_type,
TRANSFORM_PASS_OP_TYPES + QUANT_DEQUANT_PASS_OP_TYPES)
assert isinstance(configs['dtype'], str), \
"dtype must be a str."
......@@ -154,27 +102,25 @@ def _parse_configs(user_config):
assert isinstance(configs['moving_rate'], float), \
"moving_rate must be float value, The decay coefficient of moving average, default is 0.9."
assert isinstance(configs['quant_weight_only'], bool), \
"quant_weight_only must be bool value, if set quant_weight_only True, " \
"then only quantize parameters of layers which need to be quantized, " \
" and activations will not be quantized."
return configs
def quant_aware(program, place, config=None, scope=None, for_test=False):
"""Add quantization and dequantization operators to "program"
for quantization training or testing.
"""
add trainable quantization ops in program.
Args:
program(fluid.Program): training or testing ``program``.
place(fluid.CPUPlace or fluid.CUDAPlace): This parameter represents
the executor run on which device.
config(dict, optional): configs for quantization. if None, will use default config.
Default: None.
scope(fluid.Scope): Scope records the mapping between variable names and variables,
similar to brackets in programming languages. Usually users can use
`fluid.global_scope <https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/api_cn/executor_cn/global_scope_cn.html>`_. When ``None`` will use `fluid.global_scope() <https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/api_cn/executor_cn/global_scope_cn.html>`_ . Default: ``None``.
for_test(bool): If the 'program' parameter is a test program, this parameter should be set to ``True``.
Otherwise, set to ``False``.Default: False
Returns:
fluid.CompiledProgram | fluid.Program: Program with quantization and dequantization ``operators``
program(fluid.Program): program
scope(fluid.Scope): the scope to store var, it's should be the value of program's scope, usually it's fluid.global_scope().
place(fluid.CPUPlace or fluid.CUDAPlace): place
config(dict): configs for quantization, default values are in quant_config_default dict.
for_test: if program is test program, for_test should be set True, else False.
Return:
fluid.Program: user can finetune this quantization program to enhance the accuracy.
"""
scope = fluid.global_scope() if not scope else scope
......@@ -187,14 +133,6 @@ def quant_aware(program, place, config=None, scope=None, for_test=False):
main_graph = IrGraph(core.Graph(program.desc), for_test=for_test)
transform_pass_ops = []
quant_dequant_ops = []
for op_type in config['quantize_op_types']:
if op_type in TRANSFORM_PASS_OP_TYPES:
transform_pass_ops.append(op_type)
elif op_type in QUANT_DEQUANT_PASS_OP_TYPES:
quant_dequant_ops.append(op_type)
if len(transform_pass_ops) > 0:
transform_pass = QuantizationTransformPass(
scope=scope,
place=place,
......@@ -204,21 +142,11 @@ def quant_aware(program, place, config=None, scope=None, for_test=False):
weight_quantize_type=config['weight_quantize_type'],
window_size=config['window_size'],
moving_rate=config['moving_rate'],
quantizable_op_type=transform_pass_ops,
quantizable_op_type=config['quantize_op_types'],
skip_pattern=config['not_quant_pattern'])
transform_pass.apply(main_graph)
if len(quant_dequant_ops) > 0:
quant_dequant_pass = AddQuantDequantPass(
scope=scope,
place=place,
moving_rate=config['moving_rate'],
quant_bits=config['activation_bits'],
skip_pattern=config['not_quant_pattern'],
quantizable_op_type=quant_dequant_ops)
quant_dequant_pass.apply(main_graph)
if for_test:
quant_program = main_graph.to_program()
else:
......@@ -226,106 +154,20 @@ def quant_aware(program, place, config=None, scope=None, for_test=False):
return quant_program
def quant_post(executor,
model_dir,
quantize_model_path,
sample_generator,
model_filename=None,
params_filename=None,
batch_size=16,
batch_nums=None,
scope=None,
algo='KL',
quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
is_full_quantize=False,
weight_bits=8,
activation_bits=8,
is_use_cache_file=False,
cache_dir="./temp_post_training"):
"""
The function utilizes post training quantization method to quantize the
fp32 model. It uses calibrate data to calculate the scale factor of
quantized variables, and inserts fake quantization and dequantization
operators to obtain the quantized model.
Args:
executor(fluid.Executor): The executor to load, run and save the
quantized model.
model_dir(str): The path of fp32 model that will be quantized, and
the model and params that saved by ``fluid.io.save_inference_model``
are under the path.
quantize_model_path(str): The path to save quantized model using api
``fluid.io.save_inference_model``.
sample_generator(Python Generator): The sample generator provides
calibrate data for DataLoader, and it only returns a sample every time.
model_filename(str, optional): The name of model file. If parameters
are saved in separate files, set it as 'None'. Default: 'None'.
params_filename(str, optional): The name of params file.
When all parameters are saved in a single file, set it
as filename. If parameters are saved in separate files,
set it as 'None'. Default : 'None'.
batch_size(int, optional): The batch size of DataLoader, default is 16.
batch_nums(int, optional): If batch_nums is not None, the number of calibrate
data is 'batch_size*batch_nums'. If batch_nums is None, use all data
generated by sample_generator as calibrate data.
scope(fluid.Scope, optional): The scope to run program, use it to load
and save variables. If scope is None, will use fluid.global_scope().
algo(str, optional): If algo=KL, use KL-divergenc method to
get the more precise scale factor. If algo='direct', use
abs_max method to get the scale factor. Default: 'KL'.
quantizable_op_type(list[str], optional): The list of op types
that will be quantized. Default: ["conv2d", "depthwise_conv2d",
"mul"].
weight_bits(int, optional): quantization bit number for weights.
activation_bits(int): quantization bit number for activation.
is_full_quantize(bool): if True, apply quantization to all supported quantizable op type.
If False, only apply quantization to the input quantizable_op_type. Default is False.
is_use_cache_file(bool): If False, all temp data will be saved in memory. If True,
all temp data will be saved to disk. Defalut: False.
cache_dir(str): When 'is_use_cache_file' is True, temp data will be save in 'cache_dir'. Default is './temp_post_training'.
Returns:
None
"""
post_training_quantization = PostTrainingQuantization(
executor=executor,
sample_generator=sample_generator,
model_dir=model_dir,
model_filename=model_filename,
params_filename=params_filename,
batch_size=batch_size,
batch_nums=batch_nums,
scope=scope,
algo=algo,
quantizable_op_type=quantizable_op_type,
is_full_quantize=is_full_quantize,
weight_bits=weight_bits,
activation_bits=activation_bits,
is_use_cache_file=is_use_cache_file,
cache_dir=cache_dir)
post_training_quantization.quantize()
post_training_quantization.save_quantized_model(quantize_model_path)
def convert(program, place, config=None, scope=None, save_int8=False):
"""
convert quantized and well-trained ``program`` to final quantized ``program`` that can be used to save ``inference model``.
add quantization ops in program. the program returned is not trainable.
Args:
program(fluid.Program): quantized and well-trained ``test program``.
place(fluid.CPUPlace or fluid.CUDAPlace): This parameter represents the executor run on which device.
config(dict, optional): configs for convert. if set None, will use default config.
It must be same with config that used in 'quant_aware'. Default: None.
scope(fluid.Scope, optional): Scope records the mapping between variable names and variables,
similar to brackets in programming languages. Usually users can use
`fluid.global_scope <https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/api_cn/executor_cn/global_scope_cn.html>`_. When ``None`` will use `fluid.global_scope() <https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/api_cn/executor_cn/global_scope_cn.html>`_ . Default: ``None``.
save_int8: Whether to return ``program`` which model parameters' dtype is ``int8``.
This parameter can only be used to get model size. Default: ``False``.
Returns:
Tuple : freezed program which can be used for inference.
when ``save_int8`` is False, return ``freezed_program(fluid.Program)``.
when ``save_int8`` is True, return ``freezed_program(fluid.Program)`` and ``freezed_program_int8(fluid.Program)``
program(fluid.Program): program
scope(fluid.Scope): the scope to store var, when is None will use fluid.global_scope()
place(fluid.CPUPlace or fluid.CUDAPlace): place
config(dict): configs for quantization, default values are in quant_config_default dict.
save_int8: is export int8 freezed program.
Return:
fluid.Program: freezed program which can be used for inference.
parameters is float32 type, but it's value in int8 range.
fluid.Program: freezed int8 program which can be used for inference.
if save_int8 is False, this value is None.
"""
scope = fluid.global_scope() if not scope else scope
......@@ -337,28 +179,19 @@ def convert(program, place, config=None, scope=None, save_int8=False):
_logger.info("convert config {}".format(config))
test_graph = IrGraph(core.Graph(program.desc), for_test=True)
support_op_types = []
for op in config['quantize_op_types']:
if op in QuantizationFreezePass._supported_quantizable_op_type:
support_op_types.append(op)
# Freeze the graph after training by adjusting the quantize
# operators' order for the inference.
freeze_pass = QuantizationFreezePass(
scope=scope,
place=place,
weight_bits=config['weight_bits'],
activation_bits=config['activation_bits'],
weight_quantize_type=config['weight_quantize_type'],
quantizable_op_type=support_op_types)
weight_quantize_type=config['weight_quantize_type'])
freeze_pass.apply(test_graph)
freezed_program = test_graph.to_program()
if save_int8:
convert_int8_pass = ConvertToInt8Pass(
scope=fluid.global_scope(),
place=place,
quantizable_op_type=support_op_types)
scope=fluid.global_scope(), place=place)
convert_int8_pass.apply(test_graph)
freezed_program_int8 = test_graph.to_program()
return freezed_program, freezed_program_int8
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册