From 91cf2f68b41a3b4b80b5071fa643b2b5ae98a69f Mon Sep 17 00:00:00 2001 From: ceci3 <592712189@qq.com> Date: Tue, 10 Dec 2019 16:56:17 +0000 Subject: [PATCH] update --- paddleslim/nas/nas_api.md | 12 ++++-------- 1 file changed, 4 insertions(+), 8 deletions(-) diff --git a/paddleslim/nas/nas_api.md b/paddleslim/nas/nas_api.md index c6d21aaf..46cf9d2d 100644 --- a/paddleslim/nas/nas_api.md +++ b/paddleslim/nas/nas_api.md @@ -133,8 +133,7 @@ for step in range(100): paddle.dataset.cifar.test10(cycle=False), batch_size=batch_size, drop_last=False) - train_feeder = fluid.DataFeeder( - [image, label], place, program=train_program) + train_feeder = fluid.DataFeeder([image, label], place, program=train_program) test_feeder = fluid.DataFeeder([image, label], place, program=test_program) @@ -146,8 +145,7 @@ for step in range(100): feed=train_feeder.feed(data), fetch_list=fetches)[0] if batch_id % 10 == 0: - print( - 'TRAIN: steps: {}, epoch: {}, batch: {}, cost: {}'.format(step, epoch_id, batch_id, outs[0])) + print('TRAIN: steps: {}, epoch: {}, batch: {}, cost: {}'.format(step, epoch_id, batch_id, outs[0])) ### 开始预测,得到最终的测试结果作为score回传给sa_nas reward = [] @@ -161,10 +159,8 @@ for step in range(100): reward_avg = np.mean(np.array(batch_reward), axis=1) reward.append(reward_avg) - print( - 'TEST: step: {}, batch: {}, avg_cost: {}, acc_top1: {}'. - format(step, batch_id, batch_reward[0], - batch_reward[1])) + print('TEST: step: {}, batch: {}, avg_cost: {}, acc_top1: {}'. + format(step, batch_id, batch_reward[0],batch_reward[1])) finally_reward = np.mean(np.array(reward), axis=0) print( -- GitLab