Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
790a9ffb
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
1 年多 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
790a9ffb
编写于
1月 03, 2020
作者:
W
whs
提交者:
GitHub
1月 03, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add pruning walker. (#5)
上级
cc1cd6f4
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
1226 addition
and
568 deletion
+1226
-568
demo/models/__init__.py
demo/models/__init__.py
+2
-1
demo/models/pvanet.py
demo/models/pvanet.py
+505
-0
demo/prune/train.py
demo/prune/train.py
+27
-14
docs/docs/tutorials/pruning_demo.md
docs/docs/tutorials/pruning_demo.md
+42
-0
paddleslim/analysis/flops.py
paddleslim/analysis/flops.py
+4
-2
paddleslim/core/graph_wrapper.py
paddleslim/core/graph_wrapper.py
+2
-0
paddleslim/prune/__init__.py
paddleslim/prune/__init__.py
+3
-0
paddleslim/prune/prune_walker.py
paddleslim/prune/prune_walker.py
+525
-0
paddleslim/prune/pruner.py
paddleslim/prune/pruner.py
+50
-550
tests/test_prune.py
tests/test_prune.py
+2
-1
tests/test_prune_walker.py
tests/test_prune_walker.py
+64
-0
未找到文件。
demo/models/__init__.py
浏览文件 @
790a9ffb
from
.mobilenet
import
MobileNet
from
.resnet
import
ResNet34
,
ResNet50
from
.mobilenet_v2
import
MobileNetV2
from
.pvanet
import
PVANet
__all__
=
[
'MobileNet'
,
'ResNet34'
,
'ResNet50'
,
'MobileNetV2'
]
__all__
=
[
'MobileNet'
,
'ResNet34'
,
'ResNet50'
,
'MobileNetV2'
,
'PVANet'
]
demo/models/pvanet.py
0 → 100644
浏览文件 @
790a9ffb
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.initializer
import
MSRA
from
paddle.fluid.param_attr
import
ParamAttr
import
os
,
sys
,
time
,
math
import
numpy
as
np
from
collections
import
namedtuple
BLOCK_TYPE_MCRELU
=
'BLOCK_TYPE_MCRELU'
BLOCK_TYPE_INCEP
=
'BLOCK_TYPE_INCEP'
BlockConfig
=
namedtuple
(
'BlockConfig'
,
'stride, num_outputs, preact_bn, block_type'
)
__all__
=
[
'PVANet'
]
class
PVANet
():
def
__init__
(
self
):
pass
def
net
(
self
,
input
,
include_last_bn_relu
=
True
,
class_dim
=
1000
):
conv1
=
self
.
_conv_bn_crelu
(
input
,
16
,
7
,
stride
=
2
,
name
=
"conv1_1"
)
pool1
=
fluid
.
layers
.
pool2d
(
input
=
conv1
,
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
,
name
=
'pool1'
)
end_points
=
{}
conv2
=
self
.
_conv_stage
(
pool1
,
block_configs
=
[
BlockConfig
(
1
,
(
24
,
24
,
48
),
False
,
BLOCK_TYPE_MCRELU
),
BlockConfig
(
1
,
(
24
,
24
,
48
),
True
,
BLOCK_TYPE_MCRELU
),
BlockConfig
(
1
,
(
24
,
24
,
48
),
True
,
BLOCK_TYPE_MCRELU
)
],
name
=
'conv2'
,
end_points
=
end_points
)
conv3
=
self
.
_conv_stage
(
conv2
,
block_configs
=
[
BlockConfig
(
2
,
(
48
,
48
,
96
),
True
,
BLOCK_TYPE_MCRELU
),
BlockConfig
(
1
,
(
48
,
48
,
96
),
True
,
BLOCK_TYPE_MCRELU
),
BlockConfig
(
1
,
(
48
,
48
,
96
),
True
,
BLOCK_TYPE_MCRELU
),
BlockConfig
(
1
,
(
48
,
48
,
96
),
True
,
BLOCK_TYPE_MCRELU
)
],
name
=
'conv3'
,
end_points
=
end_points
)
conv4
=
self
.
_conv_stage
(
conv3
,
block_configs
=
[
BlockConfig
(
2
,
'64 48-96 24-48-48 96 128'
,
True
,
BLOCK_TYPE_INCEP
),
BlockConfig
(
1
,
'64 64-96 24-48-48 128'
,
True
,
BLOCK_TYPE_INCEP
),
BlockConfig
(
1
,
'64 64-96 24-48-48 128'
,
True
,
BLOCK_TYPE_INCEP
),
BlockConfig
(
1
,
'64 64-96 24-48-48 128'
,
True
,
BLOCK_TYPE_INCEP
)
],
name
=
'conv4'
,
end_points
=
end_points
)
conv5
=
self
.
_conv_stage
(
conv4
,
block_configs
=
[
BlockConfig
(
2
,
'64 96-128 32-64-64 128 196'
,
True
,
BLOCK_TYPE_INCEP
),
BlockConfig
(
1
,
'64 96-128 32-64-64 196'
,
True
,
BLOCK_TYPE_INCEP
),
BlockConfig
(
1
,
'64 96-128 32-64-64 196'
,
True
,
BLOCK_TYPE_INCEP
),
BlockConfig
(
1
,
'64 96-128 32-64-64 196'
,
True
,
BLOCK_TYPE_INCEP
)
],
name
=
'conv5'
,
end_points
=
end_points
)
if
include_last_bn_relu
:
conv5
=
self
.
_bn
(
conv5
,
'relu'
,
'conv5_4_last_bn'
)
end_points
[
'conv5'
]
=
conv5
output
=
fluid
.
layers
.
fc
(
input
=
input
,
size
=
class_dim
,
act
=
'softmax'
,
param_attr
=
ParamAttr
(
initializer
=
MSRA
(),
name
=
"fc_weights"
),
bias_attr
=
ParamAttr
(
name
=
"fc_offset"
))
return
output
def
_conv_stage
(
self
,
input
,
block_configs
,
name
,
end_points
):
net
=
input
for
idx
,
bc
in
enumerate
(
block_configs
):
if
bc
.
block_type
==
BLOCK_TYPE_MCRELU
:
block_scope
=
'{}_{}'
.
format
(
name
,
idx
+
1
)
fn
=
self
.
_mCReLU
elif
bc
.
block_type
==
BLOCK_TYPE_INCEP
:
block_scope
=
'{}_{}_incep'
.
format
(
name
,
idx
+
1
)
fn
=
self
.
_inception_block
net
=
fn
(
net
,
bc
,
block_scope
)
end_points
[
block_scope
]
=
net
end_points
[
name
]
=
net
return
net
def
_mCReLU
(
self
,
input
,
mc_config
,
name
):
"""
every cReLU has at least three conv steps:
conv_bn_relu, conv_bn_crelu, conv_bn_relu
if the inputs has a different number of channels as crelu output,
an extra 1x1 conv is added before sum.
"""
if
mc_config
.
preact_bn
:
conv1_fn
=
self
.
_bn_relu_conv
conv1_scope
=
name
+
'_1'
else
:
conv1_fn
=
self
.
_conv
conv1_scope
=
name
+
'_1_conv'
sub_conv1
=
conv1_fn
(
input
,
mc_config
.
num_outputs
[
0
],
1
,
conv1_scope
,
mc_config
.
stride
)
sub_conv2
=
self
.
_bn_relu_conv
(
sub_conv1
,
mc_config
.
num_outputs
[
1
],
3
,
name
+
'_2'
)
sub_conv3
=
self
.
_bn_crelu_conv
(
sub_conv2
,
mc_config
.
num_outputs
[
2
],
1
,
name
+
'_3'
)
if
int
(
input
.
shape
[
1
])
==
mc_config
.
num_outputs
[
2
]:
conv_proj
=
input
else
:
conv_proj
=
self
.
_conv
(
input
,
mc_config
.
num_outputs
[
2
],
1
,
name
+
'_proj'
,
mc_config
.
stride
)
conv
=
sub_conv3
+
conv_proj
return
conv
def
_inception_block
(
self
,
input
,
block_config
,
name
):
num_outputs
=
block_config
.
num_outputs
.
split
()
# e.g. 64 24-48-48 128
num_outputs
=
[
map
(
int
,
s
.
split
(
'-'
))
for
s
in
num_outputs
]
inception_outputs
=
num_outputs
[
-
1
][
0
]
num_outputs
=
num_outputs
[:
-
1
]
stride
=
block_config
.
stride
pool_path_outputs
=
None
if
stride
>
1
:
pool_path_outputs
=
num_outputs
[
-
1
][
0
]
num_outputs
=
num_outputs
[:
-
1
]
scopes
=
[[
'_0'
]]
# follow the name style of caffe pva
kernel_sizes
=
[[
1
]]
for
path_idx
,
path_outputs
in
enumerate
(
num_outputs
[
1
:]):
path_idx
+=
1
path_scopes
=
[
'_{}_reduce'
.
format
(
path_idx
)]
path_scopes
.
extend
([
'_{}_{}'
.
format
(
path_idx
,
i
-
1
)
for
i
in
range
(
1
,
len
(
path_outputs
))
])
scopes
.
append
(
path_scopes
)
path_kernel_sizes
=
[
1
,
3
,
3
][:
len
(
path_outputs
)]
kernel_sizes
.
append
(
path_kernel_sizes
)
paths
=
[]
if
block_config
.
preact_bn
:
preact
=
self
.
_bn
(
input
,
'relu'
,
name
+
'_bn'
)
else
:
preact
=
input
path_params
=
zip
(
num_outputs
,
scopes
,
kernel_sizes
)
for
path_idx
,
path_param
in
enumerate
(
path_params
):
path_net
=
preact
for
conv_idx
,
(
num_output
,
scope
,
kernel_size
)
in
enumerate
(
zip
(
*
path_param
)):
if
conv_idx
==
0
:
conv_stride
=
stride
else
:
conv_stride
=
1
path_net
=
self
.
_conv_bn_relu
(
path_net
,
num_output
,
kernel_size
,
name
+
scope
,
conv_stride
)
paths
.
append
(
path_net
)
if
stride
>
1
:
path_net
=
fluid
.
layers
.
pool2d
(
input
,
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
,
name
=
name
+
'_pool'
)
path_net
=
self
.
_conv_bn_relu
(
path_net
,
pool_path_outputs
,
1
,
name
+
'_poolproj'
)
paths
.
append
(
path_net
)
block_net
=
fluid
.
layers
.
concat
(
paths
,
axis
=
1
)
block_net
=
self
.
_conv
(
block_net
,
inception_outputs
,
1
,
name
+
'_out_conv'
)
if
int
(
input
.
shape
[
1
])
==
inception_outputs
:
proj
=
input
else
:
proj
=
self
.
_conv
(
input
,
inception_outputs
,
1
,
name
+
'_proj'
,
stride
)
return
block_net
+
proj
def
_scale
(
self
,
input
,
name
,
axis
=
1
,
num_axes
=
1
):
assert
num_axes
==
1
,
"layer scale not support this num_axes[%d] now"
%
(
num_axes
)
prefix
=
name
+
'_'
scale_shape
=
input
.
shape
[
axis
:
axis
+
num_axes
]
param_attr
=
fluid
.
ParamAttr
(
name
=
prefix
+
'gamma'
)
scale_param
=
fluid
.
layers
.
create_parameter
(
shape
=
scale_shape
,
dtype
=
input
.
dtype
,
name
=
name
,
attr
=
param_attr
,
is_bias
=
True
,
default_initializer
=
fluid
.
initializer
.
Constant
(
value
=
1.0
))
offset_attr
=
fluid
.
ParamAttr
(
name
=
prefix
+
'beta'
)
offset_param
=
fluid
.
layers
.
create_parameter
(
shape
=
scale_shape
,
dtype
=
input
.
dtype
,
name
=
name
,
attr
=
offset_attr
,
is_bias
=
True
,
default_initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.0
))
output
=
fluid
.
layers
.
elementwise_mul
(
input
,
scale_param
,
axis
=
axis
,
name
=
prefix
+
'mul'
)
output
=
fluid
.
layers
.
elementwise_add
(
output
,
offset_param
,
axis
=
axis
,
name
=
prefix
+
'add'
)
return
output
def
_conv
(
self
,
input
,
num_filters
,
filter_size
,
name
,
stride
=
1
,
groups
=
1
,
act
=
None
):
net
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
act
,
use_cudnn
=
True
,
param_attr
=
ParamAttr
(
name
=
name
+
'_weights'
),
bias_attr
=
ParamAttr
(
name
=
name
+
'_bias'
),
name
=
name
)
return
net
def
_bn
(
self
,
input
,
act
,
name
):
net
=
fluid
.
layers
.
batch_norm
(
input
=
input
,
act
=
act
,
name
=
name
,
moving_mean_name
=
name
+
'_mean'
,
moving_variance_name
=
name
+
'_variance'
,
param_attr
=
ParamAttr
(
name
=
name
+
'_scale'
),
bias_attr
=
ParamAttr
(
name
=
name
+
'_offset'
))
return
net
def
_bn_relu_conv
(
self
,
input
,
num_filters
,
filter_size
,
name
,
stride
=
1
,
groups
=
1
):
net
=
self
.
_bn
(
input
,
'relu'
,
name
+
'_bn'
)
net
=
self
.
_conv
(
net
,
num_filters
,
filter_size
,
name
+
'_conv'
,
stride
,
groups
)
return
net
def
_conv_bn_relu
(
self
,
input
,
num_filters
,
filter_size
,
name
,
stride
=
1
,
groups
=
1
):
net
=
self
.
_conv
(
input
,
num_filters
,
filter_size
,
name
+
'_conv'
,
stride
,
groups
)
net
=
self
.
_bn
(
net
,
'relu'
,
name
+
'_bn'
)
return
net
def
_bn_crelu
(
self
,
input
,
name
):
net
=
self
.
_bn
(
input
,
None
,
name
+
'_bn_1'
)
neg_net
=
fluid
.
layers
.
scale
(
net
,
scale
=-
1.0
,
name
=
name
+
'_neg'
)
net
=
fluid
.
layers
.
concat
([
net
,
neg_net
],
axis
=
1
)
net
=
self
.
_scale
(
net
,
name
+
'_scale'
)
net
=
fluid
.
layers
.
relu
(
net
,
name
=
name
+
'_relu'
)
return
net
def
_conv_bn_crelu
(
self
,
input
,
num_filters
,
filter_size
,
name
,
stride
=
1
,
groups
=
1
,
act
=
None
):
net
=
self
.
_conv
(
input
,
num_filters
,
filter_size
,
name
+
'_conv'
,
stride
,
groups
)
net
=
self
.
_bn_crelu
(
net
,
name
)
return
net
def
_bn_crelu_conv
(
self
,
input
,
num_filters
,
filter_size
,
name
,
stride
=
1
,
groups
=
1
,
act
=
None
):
net
=
self
.
_bn_crelu
(
input
,
name
)
net
=
self
.
_conv
(
net
,
num_filters
,
filter_size
,
name
+
'_conv'
,
stride
,
groups
)
return
net
def
deconv_bn_layer
(
self
,
input
,
num_filters
,
filter_size
=
4
,
stride
=
2
,
padding
=
1
,
act
=
'relu'
,
name
=
None
):
"""Deconv bn layer."""
deconv
=
fluid
.
layers
.
conv2d_transpose
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
'_weights'
),
bias_attr
=
ParamAttr
(
name
=
name
+
'_bias'
),
name
=
name
+
'deconv'
)
return
self
.
_bn
(
deconv
,
act
,
name
+
'_bn'
)
def
conv_bn_layer
(
self
,
input
,
num_filters
,
filter_size
,
name
,
stride
=
1
,
groups
=
1
):
return
self
.
_conv_bn_relu
(
input
,
num_filters
,
filter_size
,
name
,
stride
,
groups
)
def
Fpn_Fusion
(
blocks
,
net
):
f
=
[
blocks
[
'conv5'
],
blocks
[
'conv4'
],
blocks
[
'conv3'
],
blocks
[
'conv2'
]]
num_outputs
=
[
64
]
*
len
(
f
)
g
=
[
None
]
*
len
(
f
)
h
=
[
None
]
*
len
(
f
)
for
i
in
range
(
len
(
f
)):
h
[
i
]
=
net
.
conv_bn_layer
(
f
[
i
],
num_outputs
[
i
],
1
,
'fpn_pre_'
+
str
(
i
))
for
i
in
range
(
len
(
f
)
-
1
):
if
i
==
0
:
g
[
i
]
=
net
.
deconv_bn_layer
(
h
[
i
],
num_outputs
[
i
],
name
=
'fpn_0'
)
else
:
out
=
fluid
.
layers
.
elementwise_add
(
x
=
g
[
i
-
1
],
y
=
h
[
i
])
out
=
net
.
conv_bn_layer
(
out
,
num_outputs
[
i
],
1
,
'fpn_trans_'
+
str
(
i
))
g
[
i
]
=
net
.
deconv_bn_layer
(
out
,
num_outputs
[
i
],
name
=
'fpn_'
+
str
(
i
))
out
=
fluid
.
layers
.
elementwise_add
(
x
=
g
[
-
2
],
y
=
h
[
-
1
])
out
=
net
.
conv_bn_layer
(
out
,
num_outputs
[
-
1
],
1
,
'fpn_post_0'
)
out
=
net
.
conv_bn_layer
(
out
,
num_outputs
[
-
1
],
3
,
'fpn_post_1'
)
return
out
def
Detector_Header
(
f_common
,
net
,
class_num
):
"""Detector header."""
f_geo
=
net
.
conv_bn_layer
(
f_common
,
64
,
1
,
name
=
'geo_1'
)
f_geo
=
net
.
conv_bn_layer
(
f_geo
,
64
,
3
,
name
=
'geo_2'
)
f_geo
=
net
.
conv_bn_layer
(
f_geo
,
64
,
1
,
name
=
'geo_3'
)
f_geo
=
fluid
.
layers
.
conv2d
(
f_geo
,
8
,
1
,
use_cudnn
=
True
,
param_attr
=
ParamAttr
(
name
=
'geo_4_conv_weights'
),
bias_attr
=
ParamAttr
(
name
=
'geo_4_conv_bias'
),
name
=
'geo_4_conv'
)
name
=
'score_class_num'
+
str
(
class_num
+
1
)
f_score
=
net
.
conv_bn_layer
(
f_common
,
64
,
1
,
'score_1'
)
f_score
=
net
.
conv_bn_layer
(
f_score
,
64
,
3
,
'score_2'
)
f_score
=
net
.
conv_bn_layer
(
f_score
,
64
,
1
,
'score_3'
)
f_score
=
fluid
.
layers
.
conv2d
(
f_score
,
class_num
+
1
,
1
,
use_cudnn
=
True
,
param_attr
=
ParamAttr
(
name
=
name
+
'_conv_weights'
),
bias_attr
=
ParamAttr
(
name
=
name
+
'_conv_bias'
),
name
=
name
+
'_conv'
)
f_score
=
fluid
.
layers
.
transpose
(
f_score
,
perm
=
[
0
,
2
,
3
,
1
])
f_score
=
fluid
.
layers
.
reshape
(
f_score
,
shape
=
[
-
1
,
class_num
+
1
])
f_score
=
fluid
.
layers
.
softmax
(
input
=
f_score
)
return
f_score
,
f_geo
def
east
(
input
,
class_num
=
31
):
net
=
PVANet
()
out
=
net
.
net
(
input
)
blocks
=
[]
for
i
,
j
,
k
in
zip
([
'conv2'
,
'conv3'
,
'conv4'
,
'conv5'
],
[
1
,
2
,
4
,
8
],
[
64
,
64
,
64
,
64
]):
if
j
==
1
:
conv
=
net
.
conv_bn_layer
(
out
[
i
],
k
,
1
,
name
=
'fusion_'
+
str
(
len
(
blocks
)))
elif
j
<=
4
:
conv
=
net
.
deconv_bn_layer
(
out
[
i
],
k
,
2
*
j
,
j
,
j
//
2
,
name
=
'fusion_'
+
str
(
len
(
blocks
)))
else
:
conv
=
net
.
deconv_bn_layer
(
out
[
i
],
32
,
8
,
4
,
2
,
name
=
'fusion_'
+
str
(
len
(
blocks
))
+
'_1'
)
conv
=
net
.
deconv_bn_layer
(
conv
,
k
,
j
//
2
,
j
//
4
,
j
//
8
,
name
=
'fusion_'
+
str
(
len
(
blocks
))
+
'_2'
)
blocks
.
append
(
conv
)
conv
=
fluid
.
layers
.
concat
(
blocks
,
axis
=
1
)
f_score
,
f_geo
=
Detector_Header
(
conv
,
net
,
class_num
)
return
f_score
,
f_geo
def
inference
(
input
,
class_num
=
1
,
nms_thresh
=
0.2
,
score_thresh
=
0.5
):
f_score
,
f_geo
=
east
(
input
,
class_num
)
print
(
"f_geo shape={}"
.
format
(
f_geo
.
shape
))
print
(
"f_score shape={}"
.
format
(
f_score
.
shape
))
f_score
=
fluid
.
layers
.
transpose
(
f_score
,
perm
=
[
1
,
0
])
return
f_score
,
f_geo
def
loss
(
f_score
,
f_geo
,
l_score
,
l_geo
,
l_mask
,
class_num
=
1
):
'''
predictions: f_score: -1 x 1 x H x W; f_geo: -1 x 8 x H x W
targets: l_score: -1 x 1 x H x W; l_geo: -1 x 1 x H x W; l_mask: -1 x 1 x H x W
return: dice_loss + smooth_l1_loss
'''
#smooth_l1_loss
channels
=
8
l_geo_split
,
l_short_edge
=
fluid
.
layers
.
split
(
l_geo
,
num_or_sections
=
[
channels
,
1
],
dim
=
1
)
#last channel is short_edge_norm
f_geo_split
=
fluid
.
layers
.
split
(
f_geo
,
num_or_sections
=
[
channels
],
dim
=
1
)
f_geo_split
=
f_geo_split
[
0
]
geo_diff
=
l_geo_split
-
f_geo_split
abs_geo_diff
=
fluid
.
layers
.
abs
(
geo_diff
)
l_flag
=
l_score
>=
1
l_flag
=
fluid
.
layers
.
cast
(
x
=
l_flag
,
dtype
=
"float32"
)
l_flag
=
fluid
.
layers
.
expand
(
x
=
l_flag
,
expand_times
=
[
1
,
channels
,
1
,
1
])
smooth_l1_sign
=
abs_geo_diff
<
l_flag
smooth_l1_sign
=
fluid
.
layers
.
cast
(
x
=
smooth_l1_sign
,
dtype
=
"float32"
)
in_loss
=
abs_geo_diff
*
abs_geo_diff
*
smooth_l1_sign
+
(
abs_geo_diff
-
0.5
)
*
(
1.0
-
smooth_l1_sign
)
l_short_edge
=
fluid
.
layers
.
expand
(
x
=
l_short_edge
,
expand_times
=
[
1
,
channels
,
1
,
1
])
out_loss
=
l_short_edge
*
in_loss
*
l_flag
out_loss
=
out_loss
*
l_flag
smooth_l1_loss
=
fluid
.
layers
.
reduce_mean
(
out_loss
)
##softmax_loss
l_score
.
stop_gradient
=
True
l_score
=
fluid
.
layers
.
transpose
(
l_score
,
perm
=
[
0
,
2
,
3
,
1
])
l_score
.
stop_gradient
=
True
l_score
=
fluid
.
layers
.
reshape
(
l_score
,
shape
=
[
-
1
,
1
])
l_score
.
stop_gradient
=
True
l_score
=
fluid
.
layers
.
cast
(
x
=
l_score
,
dtype
=
"int64"
)
l_score
.
stop_gradient
=
True
softmax_loss
=
fluid
.
layers
.
cross_entropy
(
input
=
f_score
,
label
=
l_score
)
softmax_loss
=
fluid
.
layers
.
reduce_mean
(
softmax_loss
)
return
softmax_loss
,
smooth_l1_loss
demo/prune/train.py
浏览文件 @
790a9ffb
...
...
@@ -40,11 +40,33 @@ add_arg('test_period', int, 10, "Test period in epoches.")
model_list
=
[
m
for
m
in
dir
(
models
)
if
"__"
not
in
m
]
def
get_pruned_params
(
args
,
program
):
params
=
[]
if
args
.
model
==
"MobileNet"
:
for
param
in
program
.
global_block
().
all_parameters
():
if
"_sep_weights"
in
param
.
name
:
params
.
append
(
param
.
name
)
elif
args
.
model
==
"MobileNetV2"
:
for
param
in
program
.
global_block
().
all_parameters
():
if
"linear_weights"
in
param
.
name
or
"expand_weights"
in
param
.
name
:
params
.
append
(
param
.
name
)
elif
args
.
model
==
"ResNet34"
:
for
param
in
program
.
global_block
().
all_parameters
():
if
"weights"
in
param
.
name
and
"branch"
in
param
.
name
:
params
.
append
(
param
.
name
)
elif
args
.
model
==
"PVANet"
:
for
param
in
program
.
global_block
().
all_parameters
():
if
"conv_weights"
in
param
.
name
:
params
.
append
(
param
.
name
)
return
params
def
piecewise_decay
(
args
):
step
=
int
(
math
.
ceil
(
float
(
args
.
total_images
)
/
args
.
batch_size
))
bd
=
[
step
*
e
for
e
in
args
.
step_epochs
]
lr
=
[
args
.
lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
bd
)
+
1
)]
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
lr
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
learning_rate
,
momentum
=
args
.
momentum_rate
,
...
...
@@ -176,14 +198,11 @@ def compress(args):
end_time
-
start_time
))
batch_id
+=
1
params
=
[]
for
param
in
fluid
.
default_main_program
().
global_block
().
all_parameters
():
if
"_sep_weights"
in
param
.
name
:
params
.
append
(
param
.
name
)
_logger
.
info
(
"fops before pruning: {}"
.
format
(
params
=
get_pruned_params
(
args
,
fluid
.
default_main_program
())
_logger
.
info
(
"FLOPs before pruning: {}"
.
format
(
flops
(
fluid
.
default_main_program
())))
pruner
=
Pruner
()
pruned_val_program
=
pruner
.
prune
(
pruned_val_program
,
_
,
_
=
pruner
.
prune
(
val_program
,
fluid
.
global_scope
(),
params
=
params
,
...
...
@@ -191,19 +210,13 @@ def compress(args):
place
=
place
,
only_graph
=
True
)
pruned_program
=
pruner
.
prune
(
pruned_program
,
_
,
_
=
pruner
.
prune
(
fluid
.
default_main_program
(),
fluid
.
global_scope
(),
params
=
params
,
ratios
=
[
0.33
]
*
len
(
params
),
place
=
place
)
for
param
in
pruned_program
[
0
].
global_block
().
all_parameters
():
if
"weights"
in
param
.
name
:
print
param
.
name
,
param
.
shape
return
_logger
.
info
(
"fops after pruning: {}"
.
format
(
flops
(
pruned_program
)))
_logger
.
info
(
"FLOPs after pruning: {}"
.
format
(
flops
(
pruned_program
)))
for
i
in
range
(
args
.
num_epochs
):
train
(
i
,
pruned_program
)
if
i
%
args
.
test_period
==
0
:
...
...
docs/docs/tutorials/pruning_demo.md
0 → 100755
浏览文件 @
790a9ffb
# 卷积通道剪裁示例
本示例将演示如何按指定的剪裁率对每个卷积层的通道数进行剪裁。该示例默认会自动下载并使用mnist数据。
当前示例支持以下分类模型:
-
MobileNetV1
-
MobileNetV2
-
ResNet50
-
PVANet
## 接口介绍
该示例使用了
`paddleslim.Pruner`
工具类,用户接口使用介绍请参考:
[
API文档
](
https://paddlepaddle.github.io/PaddleSlim/api/prune_api/
)
## 确定待裁参数
不同模型的参数命名不同,在剪裁前需要确定待裁卷积层的参数名称。可通过以下方法列出所有参数名:
```
for param in program.global_block().all_parameters():
print("param name: {}; shape: {}".format(param.name, param.shape))
```
在
`train.py`
脚本中,提供了
`get_pruned_params`
方法,根据用户设置的选项
`--model`
确定要裁剪的参数。
## 启动裁剪任务
通过以下命令启动裁剪任务:
```
export CUDA_VISIBLE_DEVICES=0
python train.py
```
执行
`python train.py --help`
查看更多选项。
## 注意
1.
在接口
`paddle.Pruner.prune`
的参数中,
`params`
和
`ratios`
的长度需要一样。
paddleslim/analysis/flops.py
浏览文件 @
790a9ffb
...
...
@@ -36,7 +36,7 @@ def flops(program, only_conv=True, detail=False):
return
_graph_flops
(
graph
,
only_conv
=
only_conv
,
detail
=
detail
)
def
_graph_flops
(
graph
,
only_conv
=
Fals
e
,
detail
=
False
):
def
_graph_flops
(
graph
,
only_conv
=
Tru
e
,
detail
=
False
):
assert
isinstance
(
graph
,
GraphWrapper
)
flops
=
0
params2flops
=
{}
...
...
@@ -66,12 +66,14 @@ def _graph_flops(graph, only_conv=False, detail=False):
y_shape
=
op
.
inputs
(
"Y"
)[
0
].
shape
()
if
x_shape
[
0
]
==
-
1
:
x_shape
[
0
]
=
1
flops
+=
x_shape
[
0
]
*
x_shape
[
1
]
*
y_shape
[
1
]
op_flops
=
x_shape
[
0
]
*
x_shape
[
1
]
*
y_shape
[
1
]
flops
+=
op_flops
params2flops
[
op
.
inputs
(
"Y"
)[
0
].
name
()]
=
op_flops
elif
op
.
type
()
in
[
'relu'
,
'sigmoid'
,
'batch_norm'
,
'relu6'
]
and
not
only_conv
:
elif
op
.
type
()
in
[
'relu'
,
'sigmoid'
,
'batch_norm'
,
'relu6'
]
and
not
only_conv
:
input_shape
=
list
(
op
.
inputs
(
"X"
)[
0
].
shape
())
if
input_shape
[
0
]
==
-
1
:
input_shape
[
0
]
=
1
...
...
paddleslim/core/graph_wrapper.py
浏览文件 @
790a9ffb
...
...
@@ -93,6 +93,8 @@ class VarWrapper(object):
ops
.
append
(
op
)
return
ops
def
is_parameter
(
self
):
return
isinstance
(
self
.
_var
,
Parameter
)
class
OpWrapper
(
object
):
def
__init__
(
self
,
op
,
graph
):
...
...
paddleslim/prune/__init__.py
浏览文件 @
790a9ffb
...
...
@@ -23,6 +23,8 @@ from .sensitive_pruner import *
import
sensitive_pruner
from
.sensitive
import
*
import
sensitive
from
prune_walker
import
*
import
prune_walker
__all__
=
[]
...
...
@@ -32,3 +34,4 @@ __all__ += controller_server.__all__
__all__
+=
controller_client
.
__all__
__all__
+=
sensitive_pruner
.
__all__
__all__
+=
sensitive
.
__all__
__all__
+=
prune_walker
.
__all__
paddleslim/prune/prune_walker.py
0 → 100644
浏览文件 @
790a9ffb
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
logging
import
numpy
as
np
from
..core
import
Registry
from
..common
import
get_logger
__all__
=
[
"PRUNE_WORKER"
,
"conv2d"
]
_logger
=
get_logger
(
__name__
,
level
=
logging
.
INFO
)
PRUNE_WORKER
=
Registry
(
'prune_worker'
)
class
PruneWorker
(
object
):
def
__init__
(
self
,
op
,
pruned_params
=
[],
visited
=
{}):
"""
A wrapper of operator used to infer the information of all the related variables.
Args:
op(Operator): The operator to be pruned.
pruned_params(list): The list to store the information of pruning that infered by walker.
visited(dict): The auxiliary dict to record the visited operators and variables. The key is a encoded string of operator id and variable name.
Return: A instance of PruneWalker.
"""
self
.
op
=
op
self
.
pruned_params
=
pruned_params
self
.
visited
=
visited
def
prune
(
self
,
var
,
pruned_axis
,
pruned_idx
):
"""
Infer the shape of variables related with current operator, predecessor and successor.
It will search the graph to find all varibles related with `var` and record the information of pruning.
Args:
var(Variable): The root variable of searching. It can be the input or output of current operator.
pruned_axis(int): The axis to be pruned of root variable.
pruned_idx(int): The indexes to be pruned in `pruned_axis` of root variable.
"""
key
=
"_"
.
join
([
str
(
self
.
op
.
idx
()),
var
.
name
()])
if
pruned_axis
not
in
self
.
visited
:
self
.
visited
[
pruned_axis
]
=
{}
if
key
in
self
.
visited
[
pruned_axis
]:
return
else
:
self
.
visited
[
pruned_axis
][
key
]
=
True
self
.
_prune
(
var
,
pruned_axis
,
pruned_idx
)
def
_prune
(
self
,
var
,
pruned_axis
,
pruned_idx
):
raise
NotImplementedError
(
'Abstract method.'
)
def
_prune_op
(
self
,
op
,
var
,
pruned_axis
,
pruned_idx
,
visited
=
None
):
if
op
.
type
().
endswith
(
"_grad"
):
return
if
visited
is
not
None
:
self
.
visited
=
visited
cls
=
PRUNE_WORKER
.
get
(
op
.
type
())
assert
cls
is
not
None
,
"The walker of {} is not registered."
.
format
(
op
.
type
())
_logger
.
debug
(
"
\n
from: {}
\n
to: {}
\n
pruned_axis: {}; var: {}"
.
format
(
self
.
op
,
op
,
pruned_axis
,
var
.
name
()))
walker
=
cls
(
op
,
pruned_params
=
self
.
pruned_params
,
visited
=
self
.
visited
)
walker
.
prune
(
var
,
pruned_axis
,
pruned_idx
)
@
PRUNE_WORKER
.
register
class
conv2d
(
PruneWorker
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
=
{}):
super
(
conv2d
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
def
_prune
(
self
,
var
,
pruned_axis
,
pruned_idx
):
data_format
=
sef
.
op
.
attr
(
"data_format"
)
channel_axis
=
1
if
data_format
==
"NHWC"
:
channel_axis
=
3
if
var
in
self
.
op
.
inputs
(
"Input"
):
assert
pruned_axis
==
channel_axis
,
"The Input of conv2d can only be pruned at channel axis, but got {}; var: {}"
.
format
(
pruned_axis
,
var
.
name
())
filter_var
=
self
.
op
.
inputs
(
"Filter"
)[
0
]
key
=
"_"
.
join
([
str
(
self
.
op
.
idx
()),
filter_var
.
name
()])
self
.
visited
[
1
][
key
]
=
True
self
.
pruned_params
.
append
((
filter_var
,
1
,
pruned_idx
))
for
op
in
filter_var
.
outputs
():
self
.
_prune_op
(
op
,
filter_var
,
1
,
pruned_idx
)
elif
var
in
self
.
op
.
inputs
(
"Filter"
):
assert
pruned_axis
in
[
0
,
1
]
self
.
pruned_params
.
append
((
var
,
pruned_axis
,
pruned_idx
))
for
op
in
var
.
outputs
():
self
.
_prune_op
(
op
,
var
,
pruned_axis
,
pruned_idx
)
if
pruned_axis
==
0
:
if
len
(
self
.
op
.
inputs
(
"Bias"
))
>
0
:
self
.
pruned_params
.
append
(
(
self
.
op
.
inputs
(
"Bias"
),
channel_axis
,
pruned_idx
))
output_var
=
self
.
op
.
outputs
(
"Output"
)[
0
]
key
=
"_"
.
join
([
str
(
self
.
op
.
idx
()),
output_var
.
name
()])
self
.
visited
[
channel_axis
][
key
]
=
True
next_ops
=
output_var
.
outputs
()
for
op
in
next_ops
:
self
.
_prune_op
(
op
,
output_var
,
channel_axis
,
pruned_idx
)
elif
pruned_axis
==
1
:
input_var
=
self
.
op
.
inputs
(
"Input"
)[
0
]
key
=
"_"
.
join
([
str
(
self
.
op
.
idx
()),
input_var
.
name
()])
self
.
visited
[
channel_axis
][
key
]
=
True
pre_ops
=
input_var
.
inputs
()
for
op
in
pre_ops
:
self
.
_prune_op
(
op
,
input_var
,
channel_axis
,
pruned_idx
)
elif
var
in
self
.
op
.
outputs
(
"Output"
):
assert
pruned_axis
==
channel_axis
,
"pruned_axis: {}; var: {}"
.
format
(
pruned_axis
,
var
.
name
())
filter_var
=
self
.
op
.
inputs
(
"Filter"
)[
0
]
key
=
"_"
.
join
([
str
(
self
.
op
.
idx
()),
filter_var
.
name
()])
self
.
visited
[
0
][
key
]
=
True
self
.
pruned_params
.
append
((
filter_var
,
0
,
pruned_idx
))
for
op
in
filter_var
.
outputs
():
self
.
_prune_op
(
op
,
filter_var
,
0
,
pruned_idx
)
if
len
(
self
.
op
.
inputs
(
"Bias"
))
>
0
:
self
.
pruned_params
.
append
(
(
self
.
op
.
inputs
(
"Bias"
)[
0
],
channel_axis
,
pruned_idx
))
output_var
=
self
.
op
.
outputs
(
"Output"
)[
0
]
next_ops
=
output_var
.
outputs
()
for
op
in
next_ops
:
self
.
_prune_op
(
op
,
output_var
,
channel_axis
,
pruned_idx
)
@
PRUNE_WORKER
.
register
class
batch_norm
(
PruneWorker
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
batch_norm
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
def
_prune
(
self
,
var
,
pruned_axis
,
pruned_idx
):
if
(
var
not
in
self
.
op
.
outputs
(
"Y"
))
and
(
var
not
in
self
.
op
.
inputs
(
"X"
)):
return
if
var
in
self
.
op
.
outputs
(
"Y"
):
in_var
=
self
.
op
.
inputs
(
"X"
)[
0
]
key
=
"_"
.
join
([
str
(
self
.
op
.
idx
()),
in_var
.
name
()])
self
.
visited
[
pruned_axis
][
key
]
=
True
pre_ops
=
in_var
.
inputs
()
for
op
in
pre_ops
:
self
.
_prune_op
(
op
,
in_var
,
pruned_axis
,
pruned_idx
)
for
param
in
[
"Scale"
,
"Bias"
,
"Mean"
,
"Variance"
]:
param_var
=
self
.
op
.
inputs
(
param
)[
0
]
for
op
in
param_var
.
outputs
():
self
.
_prune_op
(
op
,
param_var
,
0
,
pruned_idx
)
self
.
pruned_params
.
append
((
param_var
,
0
,
pruned_idx
))
out_var
=
self
.
op
.
outputs
(
"Y"
)[
0
]
key
=
"_"
.
join
([
str
(
self
.
op
.
idx
()),
out_var
.
name
()])
self
.
visited
[
pruned_axis
][
key
]
=
True
next_ops
=
out_var
.
outputs
()
for
op
in
next_ops
:
self
.
_prune_op
(
op
,
out_var
,
pruned_axis
,
pruned_idx
)
class
elementwise_op
(
PruneWorker
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
elementwise_op
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
def
_prune
(
self
,
var
,
pruned_axis
,
pruned_idx
):
axis
=
self
.
op
.
attr
(
"axis"
)
if
axis
==
-
1
:
# TODO
axis
=
0
if
var
in
self
.
op
.
outputs
(
"Out"
):
for
name
in
[
"X"
,
"Y"
]:
actual_axis
=
pruned_axis
if
name
==
"Y"
:
actual_axis
=
pruned_axis
-
axis
in_var
=
self
.
op
.
inputs
(
name
)[
0
]
pre_ops
=
in_var
.
inputs
()
for
op
in
pre_ops
:
self
.
_prune_op
(
op
,
in_var
,
actual_axis
,
pruned_idx
)
else
:
if
var
in
self
.
op
.
inputs
(
"X"
):
in_var
=
self
.
op
.
inputs
(
"Y"
)[
0
]
if
in_var
.
is_parameter
():
self
.
pruned_params
.
append
(
(
in_var
,
pruned_axis
-
axis
,
pruned_idx
))
pre_ops
=
in_var
.
inputs
()
for
op
in
pre_ops
:
self
.
_prune_op
(
op
,
in_var
,
pruned_axis
-
axis
,
pruned_idx
)
elif
var
in
self
.
op
.
inputs
(
"Y"
):
in_var
=
self
.
op
.
inputs
(
"X"
)[
0
]
pre_ops
=
in_var
.
inputs
()
pruned_axis
=
pruned_axis
+
axis
for
op
in
pre_ops
:
self
.
_prune_op
(
op
,
in_var
,
pruned_axis
,
pruned_idx
)
out_var
=
self
.
op
.
outputs
(
"Out"
)[
0
]
key
=
"_"
.
join
([
str
(
self
.
op
.
idx
()),
out_var
.
name
()])
self
.
visited
[
pruned_axis
][
key
]
=
True
next_ops
=
out_var
.
outputs
()
for
op
in
next_ops
:
self
.
_prune_op
(
op
,
out_var
,
pruned_axis
,
pruned_idx
)
@
PRUNE_WORKER
.
register
class
elementwise_add
(
elementwise_op
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
elementwise_add
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
@
PRUNE_WORKER
.
register
class
elementwise_sub
(
elementwise_op
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
elementwise_sub
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
@
PRUNE_WORKER
.
register
class
elementwise_mul
(
elementwise_op
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
elementwise_mul
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
class
activation
(
PruneWorker
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
activation
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
self
.
input_name
=
"X"
self
.
output_name
=
"Out"
def
_prune
(
self
,
var
,
pruned_axis
,
pruned_idx
):
if
var
in
self
.
op
.
outputs
(
self
.
output_name
):
in_var
=
self
.
op
.
inputs
(
self
.
input_name
)[
0
]
pre_ops
=
in_var
.
inputs
()
for
op
in
pre_ops
:
self
.
_prune_op
(
op
,
in_var
,
pruned_axis
,
pruned_idx
)
out_var
=
self
.
op
.
outputs
(
self
.
output_name
)[
0
]
key
=
"_"
.
join
([
str
(
self
.
op
.
idx
()),
out_var
.
name
()])
self
.
visited
[
pruned_axis
][
key
]
=
True
next_ops
=
out_var
.
outputs
()
for
op
in
next_ops
:
self
.
_prune_op
(
op
,
out_var
,
pruned_axis
,
pruned_idx
)
@
PRUNE_WORKER
.
register
class
uniform_random_batch_size_like
(
activation
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
uniform_random_batch_size_like
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
self
.
input_name
=
"Input"
self
.
output_name
=
"Out"
@
PRUNE_WORKER
.
register
class
bilinear_interp
(
activation
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
bilinear_interp
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
@
PRUNE_WORKER
.
register
class
relu
(
activation
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
relu
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
@
PRUNE_WORKER
.
register
class
floor
(
activation
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
floor
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
@
PRUNE_WORKER
.
register
class
relu6
(
activation
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
relu6
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
@
PRUNE_WORKER
.
register
class
pool2d
(
activation
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
pool2d
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
@
PRUNE_WORKER
.
register
class
sum
(
PruneWorker
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
sum
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
def
_prune
(
self
,
var
,
pruned_axis
,
pruned_idx
):
if
var
in
self
.
op
.
outputs
(
"Out"
):
for
in_var
in
self
.
op
.
inputs
(
"X"
):
pre_ops
=
in_var
.
inputs
()
for
op
in
pre_ops
:
self
.
_prune_op
(
op
,
in_var
,
pruned_axis
,
pruned_idx
)
elif
var
in
self
.
op
.
inputs
(
"X"
):
for
in_var
in
self
.
op
.
inputs
(
"X"
):
if
in_var
!=
var
:
pre_ops
=
in_var
.
inputs
()
for
op
in
pre_ops
:
self
.
_prune_op
(
op
,
in_var
,
pruned_axis
,
pruned_idx
)
out_var
=
self
.
op
.
outputs
(
"Out"
)[
0
]
key
=
"_"
.
join
([
str
(
self
.
op
.
idx
()),
out_var
.
name
()])
self
.
visited
[
pruned_axis
][
key
]
=
True
next_ops
=
out_var
.
outputs
()
for
op
in
next_ops
:
self
.
_prune_op
(
op
,
out_var
,
pruned_axis
,
pruned_idx
)
@
PRUNE_WORKER
.
register
class
concat
(
PruneWorker
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
concat
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
def
_prune
(
self
,
var
,
pruned_axis
,
pruned_idx
):
idx
=
[]
axis
=
self
.
op
.
attr
(
"axis"
)
if
var
in
self
.
op
.
outputs
(
"Out"
):
start
=
0
if
axis
==
pruned_axis
:
for
_
,
in_var
in
enumerate
(
self
.
op
.
inputs
(
"X"
)):
idx
=
[]
for
i
in
pruned_idx
:
r_idx
=
i
-
start
if
r_idx
<
in_var
.
shape
()[
pruned_axis
]
and
r_idx
>=
0
:
idx
.
append
(
r_idx
)
start
+=
in_var
.
shape
()[
pruned_axis
]
pre_ops
=
in_var
.
inputs
()
for
op
in
pre_ops
:
self
.
_prune_op
(
op
,
in_var
,
pruned_axis
,
idx
)
idx
=
pruned_idx
[:]
else
:
for
_
,
in_var
in
enumerate
(
self
.
op
.
inputs
(
"X"
)):
pre_ops
=
in_var
.
inputs
()
for
op
in
pre_ops
:
self
.
_prune_op
(
op
,
in_var
,
pruned_axis
,
pruned_idx
)
elif
var
in
self
.
op
.
inputs
(
"X"
):
if
axis
==
pruned_axis
:
idx
=
[]
start
=
0
for
v
in
self
.
op
.
inputs
(
"X"
):
if
v
.
name
()
==
var
.
name
():
idx
=
[
i
+
start
for
i
in
pruned_idx
]
else
:
start
+=
v
.
shape
()[
pruned_axis
]
out_var
=
self
.
op
.
outputs
(
"Out"
)[
0
]
key
=
"_"
.
join
([
str
(
self
.
op
.
idx
()),
out_var
.
name
()])
self
.
visited
[
pruned_axis
][
key
]
=
True
next_ops
=
out_var
.
outputs
()
for
op
in
next_ops
:
self
.
_prune_op
(
op
,
out_var
,
pruned_axis
,
idx
,
visited
=
{})
else
:
for
v
in
self
.
op
.
inputs
(
"X"
):
for
op
in
v
.
inputs
():
self
.
_prune_op
(
op
,
v
,
pruned_axis
,
pruned_idx
)
out_var
=
self
.
op
.
outputs
(
"Out"
)[
0
]
key
=
"_"
.
join
([
str
(
self
.
op
.
idx
()),
out_var
.
name
()])
self
.
visited
[
pruned_axis
][
key
]
=
True
next_ops
=
out_var
.
outputs
()
for
op
in
next_ops
:
self
.
_prune_op
(
op
,
out_var
,
pruned_axis
,
pruned_idx
)
@
PRUNE_WORKER
.
register
class
depthwise_conv2d
(
PruneWorker
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
=
{}):
super
(
depthwise_conv2d
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
def
_prune
(
self
,
var
,
pruned_axis
,
pruned_idx
):
data_format
=
sef
.
op
.
attr
(
"data_format"
)
channel_axis
=
1
if
data_format
==
"NHWC"
:
channel_axis
=
3
if
var
in
self
.
op
.
inputs
(
"Input"
):
assert
pruned_axis
==
channel_axis
,
"The Input of conv2d can only be pruned at channel axis, but got {}"
.
format
(
pruned_axis
)
filter_var
=
self
.
op
.
inputs
(
"Filter"
)[
0
]
self
.
pruned_params
.
append
((
filter_var
,
0
,
pruned_idx
))
key
=
"_"
.
join
([
str
(
self
.
op
.
idx
()),
filter_var
.
name
()])
self
.
visited
[
0
][
key
]
=
True
new_groups
=
filter_var
.
shape
()[
0
]
-
len
(
pruned_idx
)
self
.
op
.
set_attr
(
"groups"
,
new_groups
)
for
op
in
filter_var
.
outputs
():
self
.
_prune_op
(
op
,
filter_var
,
0
,
pruned_idx
)
output_var
=
self
.
op
.
outputs
(
"Output"
)[
0
]
next_ops
=
output_var
.
outputs
()
for
op
in
next_ops
:
self
.
_prune_op
(
op
,
output_var
,
channel_axis
,
pruned_idx
)
elif
var
in
self
.
op
.
inputs
(
"Filter"
):
assert
pruned_axis
in
[
0
]
if
pruned_axis
==
0
:
if
len
(
self
.
op
.
inputs
(
"Bias"
))
>
0
:
self
.
pruned_params
.
append
(
(
self
.
op
.
inputs
(
"Bias"
),
channel_axis
,
pruned_idx
))
self
.
pruned_params
.
append
((
var
,
0
,
pruned_idx
))
new_groups
=
var
.
shape
()[
0
]
-
len
(
pruned_idx
)
self
.
op
.
set_attr
(
"groups"
,
new_groups
)
for
op
in
var
.
outputs
():
self
.
_prune_op
(
op
,
var
,
0
,
pruned_idx
)
output_var
=
self
.
op
.
outputs
(
"Output"
)[
0
]
key
=
"_"
.
join
([
str
(
self
.
op
.
idx
()),
output_var
.
name
()])
self
.
visited
[
channel_axis
][
key
]
=
True
next_ops
=
output_var
.
outputs
()
for
op
in
next_ops
:
self
.
_prune_op
(
op
,
output_var
,
channel_axis
,
pruned_idx
)
for
op
in
var
.
outputs
():
self
.
_prune_op
(
op
,
var
,
pruned_axis
,
pruned_idx
)
elif
var
in
self
.
op
.
outputs
(
"Output"
):
assert
pruned_axis
==
channel_axis
filter_var
=
self
.
op
.
inputs
(
"Filter"
)[
0
]
self
.
pruned_params
.
append
((
filter_var
,
0
,
pruned_idx
))
key
=
"_"
.
join
([
str
(
self
.
op
.
idx
()),
filter_var
.
name
()])
self
.
visited
[
0
][
key
]
=
True
new_groups
=
filter_var
.
shape
()[
0
]
-
len
(
pruned_idx
)
op
.
set_attr
(
"groups"
,
new_groups
)
for
op
in
filter_var
.
outputs
():
self
.
_prune_op
(
op
,
filter_var
,
0
,
pruned_idx
)
if
len
(
self
.
op
.
inputs
(
"Bias"
))
>
0
:
self
.
pruned_params
.
append
(
(
self
.
op
.
inputs
(
"Bias"
)[
0
],
channel_axis
,
pruned_idx
))
in_var
=
self
.
op
.
inputs
(
"Input"
)[
0
]
key
=
"_"
.
join
([
str
(
self
.
op
.
idx
()),
in_var
.
name
()])
self
.
visited
[
channel_axis
][
key
]
=
True
pre_ops
=
in_var
.
inputs
()
for
op
in
pre_ops
:
self
.
_prune_op
(
op
,
in_var
,
channel_axis
,
pruned_idx
)
output_var
=
self
.
op
.
outputs
(
"Output"
)[
0
]
next_ops
=
output_var
.
outputs
()
for
op
in
next_ops
:
self
.
_prune_op
(
op
,
output_var
,
channel_axis
,
pruned_idx
)
@
PRUNE_WORKER
.
register
class
mul
(
PruneWorker
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
=
{}):
super
(
mul
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
def
_prune
(
self
,
var
,
pruned_axis
,
pruned_idx
):
if
var
in
self
.
op
.
inputs
(
"X"
):
assert
pruned_axis
==
1
,
"The Input of conv2d can only be pruned at axis 1, but got {}"
.
format
(
pruned_axis
)
idx
=
[]
feature_map_size
=
var
.
shape
()[
2
]
*
var
.
shape
()[
3
]
range_idx
=
np
.
array
(
range
(
feature_map_size
))
for
i
in
pruned_idx
:
idx
+=
list
(
range_idx
+
i
*
feature_map_size
)
param_var
=
self
.
op
.
inputs
(
"Y"
)[
0
]
self
.
pruned_params
.
append
((
param_var
,
0
,
idx
))
for
op
in
param_var
.
outputs
():
self
.
_prune_op
(
op
,
param_var
,
0
,
pruned_idx
)
@
PRUNE_WORKER
.
register
class
scale
(
PruneWorker
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
=
{}):
super
(
scale
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
def
_prune
(
self
,
var
,
pruned_axis
,
pruned_idx
):
if
var
in
self
.
op
.
inputs
(
"X"
):
out_var
=
self
.
op
.
outputs
(
"Out"
)[
0
]
for
op
in
out_var
.
outputs
():
self
.
_prune_op
(
op
,
out_var
,
pruned_axis
,
pruned_idx
)
elif
var
in
self
.
op
.
outputs
(
"Out"
):
in_var
=
self
.
op
.
inputs
(
"X"
)[
0
]
for
op
in
in_var
.
inputs
():
self
.
_prune_op
(
op
,
in_var
,
pruned_axis
,
pruned_idx
)
@
PRUNE_WORKER
.
register
class
momentum
(
PruneWorker
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
=
{}):
super
(
momentum
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
def
_prune
(
self
,
var
,
pruned_axis
,
pruned_idx
):
if
var
in
self
.
op
.
inputs
(
"Param"
):
_logger
.
debug
(
"pruning momentum, var:{}"
.
format
(
var
.
name
()))
velocity_var
=
self
.
op
.
inputs
(
"Velocity"
)[
0
]
self
.
pruned_params
.
append
((
velocity_var
,
pruned_axis
,
pruned_idx
))
@
PRUNE_WORKER
.
register
class
adam
(
PruneWorker
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
=
{}):
super
(
adam
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
def
_prune
(
self
,
var
,
pruned_axis
,
pruned_idx
):
if
var
in
self
.
op
.
inputs
(
"Param"
):
_logger
.
debug
(
"pruning momentum, var:{}"
.
format
(
var
.
name
()))
moment1_var
=
self
.
op
.
inputs
(
"Moment1"
)[
0
]
self
.
pruned_params
.
append
((
moment1_var
,
pruned_axis
,
pruned_idx
))
moment2_var
=
self
.
op
.
inputs
(
"Moment2"
)[
0
]
self
.
pruned_params
.
append
((
moment2_var
,
pruned_axis
,
pruned_idx
))
paddleslim/prune/pruner.py
浏览文件 @
790a9ffb
...
...
@@ -17,6 +17,7 @@ import numpy as np
import
paddle.fluid
as
fluid
import
copy
from
..core
import
VarWrapper
,
OpWrapper
,
GraphWrapper
from
.prune_walker
import
conv2d
as
conv2d_walker
from
..common
import
get_logger
__all__
=
[
"Pruner"
]
...
...
@@ -67,561 +68,60 @@ class Pruner():
graph
=
GraphWrapper
(
program
.
clone
())
param_backup
=
{}
if
param_backup
else
None
param_shape_backup
=
{}
if
param_shape_backup
else
None
self
.
_prune_parameters
(
graph
,
scope
,
params
,
ratios
,
place
,
lazy
=
lazy
,
only_graph
=
only_graph
,
param_backup
=
param_backup
,
param_shape_backup
=
param_shape_backup
)
for
op
in
graph
.
ops
():
if
op
.
type
()
==
'depthwise_conv2d'
or
op
.
type
(
)
==
'depthwise_conv2d_grad'
:
op
.
set_attr
(
'groups'
,
op
.
inputs
(
'Filter'
)[
0
].
shape
()[
0
])
return
graph
.
program
,
param_backup
,
param_shape_backup
def
_prune_filters_by_ratio
(
self
,
scope
,
params
,
ratio
,
place
,
lazy
=
False
,
only_graph
=
False
,
param_shape_backup
=
None
,
param_backup
=
None
):
"""
Pruning filters by given ratio.
Args:
scope(fluid.core.Scope): The scope used to pruning filters.
params(list<VarWrapper>): A list of filter parameters.
ratio(float): The ratio to be pruned.
place(fluid.Place): The device place of filter parameters.
lazy(bool): True means setting the pruned elements to zero.
False means cutting down the pruned elements.
only_graph(bool): True means only modifying the graph.
False means modifying graph and variables in scope.
"""
if
params
[
0
].
name
()
in
self
.
pruned_list
[
0
]:
return
if
only_graph
:
pruned_num
=
int
(
round
(
params
[
0
].
shape
()[
0
]
*
ratio
))
for
param
in
params
:
ori_shape
=
param
.
shape
()
if
param_backup
is
not
None
and
(
param
.
name
()
not
in
param_backup
):
param_backup
[
param
.
name
()]
=
copy
.
deepcopy
(
ori_shape
)
new_shape
=
list
(
ori_shape
)
new_shape
[
0
]
-=
pruned_num
param
.
set_shape
(
new_shape
)
_logger
.
debug
(
"prune [{}] from {} to {}"
.
format
(
param
.
name
(
),
ori_shape
,
new_shape
))
self
.
pruned_list
[
0
].
append
(
param
.
name
())
return
range
(
pruned_num
)
else
:
param_t
=
scope
.
find_var
(
params
[
0
].
name
()).
get_tensor
()
pruned_idx
=
self
.
_cal_pruned_idx
(
params
[
0
].
name
(),
np
.
array
(
param_t
),
ratio
,
axis
=
0
)
for
param
in
params
:
assert
isinstance
(
param
,
VarWrapper
)
param_t
=
scope
.
find_var
(
param
.
name
()).
get_tensor
()
if
param_backup
is
not
None
and
(
param
.
name
()
not
in
param_backup
):
param_backup
[
param
.
name
()]
=
copy
.
deepcopy
(
np
.
array
(
param_t
))
try
:
pruned_param
=
self
.
_prune_tensor
(
np
.
array
(
param_t
),
pruned_idx
,
pruned_axis
=
0
,
lazy
=
lazy
)
except
IndexError
as
e
:
_logger
.
error
(
"Pruning {}, but get [{}]"
.
format
(
param
.
name
(
),
e
))
param_t
.
set
(
pruned_param
,
place
)
ori_shape
=
param
.
shape
()
if
param_shape_backup
is
not
None
and
(
param
.
name
()
not
in
param_shape_backup
):
param_shape_backup
[
param
.
name
()]
=
copy
.
deepcopy
(
param
.
shape
())
new_shape
=
list
(
param
.
shape
())
new_shape
[
0
]
=
pruned_param
.
shape
[
0
]
param
.
set_shape
(
new_shape
)
_logger
.
debug
(
"prune [{}] from {} to {}"
.
format
(
param
.
name
(
),
ori_shape
,
new_shape
))
self
.
pruned_list
[
0
].
append
(
param
.
name
())
return
pruned_idx
def
_prune_parameter_by_idx
(
self
,
scope
,
params
,
pruned_idx
,
pruned_axis
,
place
,
lazy
=
False
,
only_graph
=
False
,
param_shape_backup
=
None
,
param_backup
=
None
):
"""
Pruning parameters in given axis.
Args:
scope(fluid.core.Scope): The scope storing paramaters to be pruned.
params(VarWrapper): The parameter to be pruned.
pruned_idx(list): The index of elements to be pruned.
pruned_axis(int): The pruning axis.
place(fluid.Place): The device place of filter parameters.
lazy(bool): True means setting the pruned elements to zero.
False means cutting down the pruned elements.
only_graph(bool): True means only modifying the graph.
False means modifying graph and variables in scope.
"""
if
params
[
0
].
name
()
in
self
.
pruned_list
[
pruned_axis
]:
return
if
only_graph
:
pruned_num
=
len
(
pruned_idx
)
for
param
in
params
:
ori_shape
=
param
.
shape
()
if
param_backup
is
not
None
and
(
param
.
name
()
not
in
param_backup
):
param_backup
[
param
.
name
()]
=
copy
.
deepcopy
(
ori_shape
)
new_shape
=
list
(
ori_shape
)
new_shape
[
pruned_axis
]
-=
pruned_num
param
.
set_shape
(
new_shape
)
_logger
.
debug
(
"prune [{}] from {} to {}"
.
format
(
param
.
name
(
),
ori_shape
,
new_shape
))
self
.
pruned_list
[
pruned_axis
].
append
(
param
.
name
())
else
:
for
param
in
params
:
assert
isinstance
(
param
,
VarWrapper
)
param_t
=
scope
.
find_var
(
param
.
name
()).
get_tensor
()
if
param_backup
is
not
None
and
(
param
.
name
()
not
in
param_backup
):
param_backup
[
param
.
name
()]
=
copy
.
deepcopy
(
np
.
array
(
param_t
))
pruned_param
=
self
.
_prune_tensor
(
np
.
array
(
param_t
),
pruned_idx
,
pruned_axis
,
lazy
=
lazy
)
param_t
.
set
(
pruned_param
,
place
)
ori_shape
=
param
.
shape
()
if
param_shape_backup
is
not
None
and
(
param
.
name
()
not
in
param_shape_backup
):
param_shape_backup
[
param
.
name
()]
=
copy
.
deepcopy
(
param
.
shape
())
new_shape
=
list
(
param
.
shape
())
new_shape
[
pruned_axis
]
=
pruned_param
.
shape
[
pruned_axis
]
param
.
set_shape
(
new_shape
)
_logger
.
debug
(
"prune [{}] from {} to {}"
.
format
(
param
.
name
(
),
ori_shape
,
new_shape
))
self
.
pruned_list
[
pruned_axis
].
append
(
param
.
name
())
def
_forward_search_related_op
(
self
,
graph
,
node
):
"""
Forward search operators that will be affected by pruning of param.
Args:
graph(GraphWrapper): The graph to be searched.
node(VarWrapper|OpWrapper): The current pruned parameter or operator.
Returns:
list<OpWrapper>: A list of operators.
"""
visited
=
{}
for
op
in
graph
.
ops
():
visited
[
op
.
idx
()]
=
False
stack
=
[]
visit_path
=
[]
if
isinstance
(
node
,
VarWrapper
):
for
op
in
graph
.
ops
():
if
(
not
op
.
is_bwd_op
())
and
(
node
in
op
.
all_inputs
()):
next_ops
=
self
.
_get_next_unvisited_op
(
graph
,
visited
,
op
)
# visit_path.append(op)
visited
[
op
.
idx
()]
=
True
for
next_op
in
next_ops
:
if
visited
[
next_op
.
idx
()]
==
False
:
stack
.
append
(
next_op
)
visit_path
.
append
(
next_op
)
visited
[
next_op
.
idx
()]
=
True
elif
isinstance
(
node
,
OpWrapper
):
next_ops
=
self
.
_get_next_unvisited_op
(
graph
,
visited
,
node
)
for
next_op
in
next_ops
:
if
visited
[
next_op
.
idx
()]
==
False
:
stack
.
append
(
next_op
)
visit_path
.
append
(
next_op
)
visited
[
next_op
.
idx
()]
=
True
while
len
(
stack
)
>
0
:
#top_op = stack[len(stack) - 1]
top_op
=
stack
.
pop
(
0
)
next_ops
=
None
if
top_op
.
type
()
in
[
"conv2d"
,
"deformable_conv"
]:
next_ops
=
None
elif
top_op
.
type
()
in
[
"mul"
,
"concat"
]:
next_ops
=
None
else
:
next_ops
=
self
.
_get_next_unvisited_op
(
graph
,
visited
,
top_op
)
if
next_ops
!=
None
:
for
op
in
next_ops
:
if
visited
[
op
.
idx
()]
==
False
:
stack
.
append
(
op
)
visit_path
.
append
(
op
)
visited
[
op
.
idx
()]
=
True
return
visit_path
def
_get_next_unvisited_op
(
self
,
graph
,
visited
,
top_op
):
"""
Get next unvisited adjacent operators of given operators.
Args:
graph(GraphWrapper): The graph used to search.
visited(list): The ids of operators that has been visited.
top_op: The given operator.
Returns:
list<OpWrapper>: A list of operators.
"""
assert
isinstance
(
top_op
,
OpWrapper
)
next_ops
=
[]
for
op
in
graph
.
next_ops
(
top_op
):
if
(
visited
[
op
.
idx
()]
==
False
)
and
(
not
op
.
is_bwd_op
()):
next_ops
.
append
(
op
)
return
next_ops
def
_get_accumulator
(
self
,
graph
,
param
):
"""
Get accumulators of given parameter. The accumulator was created by optimizer.
Args:
graph(GraphWrapper): The graph used to search.
param(VarWrapper): The given parameter.
Returns:
list<VarWrapper>: A list of accumulators which are variables.
"""
assert
isinstance
(
param
,
VarWrapper
)
params
=
[]
for
op
in
param
.
outputs
():
if
op
.
is_opt_op
():
for
out_var
in
op
.
all_outputs
():
if
graph
.
is_persistable
(
out_var
)
and
out_var
.
name
(
)
!=
param
.
name
():
params
.
append
(
out_var
)
return
params
def
_forward_pruning_ralated_params
(
self
,
graph
,
scope
,
param
,
place
,
ratio
=
None
,
pruned_idxs
=
None
,
lazy
=
False
,
only_graph
=
False
,
param_backup
=
None
,
param_shape_backup
=
None
):
"""
Pruning all the parameters affected by the pruning of given parameter.
Args:
graph(GraphWrapper): The graph to be searched.
scope(fluid.core.Scope): The scope storing paramaters to be pruned.
param(VarWrapper): The given parameter.
place(fluid.Place): The device place of filter parameters.
ratio(float): The target ratio to be pruned.
pruned_idx(list): The index of elements to be pruned.
lazy(bool): True means setting the pruned elements to zero.
False means cutting down the pruned elements.
only_graph(bool): True means only modifying the graph.
False means modifying graph and variables in scope.
"""
assert
isinstance
(
graph
,
GraphWrapper
),
"graph must be instance of slim.core.GraphWrapper"
assert
isinstance
(
param
,
VarWrapper
),
"param must be instance of slim.core.VarWrapper"
if
param
.
name
()
in
self
.
pruned_list
[
0
]:
return
related_ops
=
self
.
_forward_search_related_op
(
graph
,
param
)
for
op
in
related_ops
:
_logger
.
debug
(
"relate op: {};"
.
format
(
op
))
if
ratio
is
None
:
assert
pruned_idxs
is
not
None
self
.
_prune_parameter_by_idx
(
scope
,
[
param
]
+
self
.
_get_accumulator
(
graph
,
param
),
pruned_idxs
,
pruned_axis
=
0
,
place
=
place
,
lazy
=
lazy
,
only_graph
=
only_graph
,
param_backup
=
param_backup
,
param_shape_backup
=
param_shape_backup
)
else
:
pruned_idxs
=
self
.
_prune_filters_by_ratio
(
scope
,
[
param
]
+
self
.
_get_accumulator
(
graph
,
param
),
ratio
,
place
,
lazy
=
lazy
,
only_graph
=
only_graph
,
param_backup
=
param_backup
,
param_shape_backup
=
param_shape_backup
)
self
.
_prune_ops
(
related_ops
,
pruned_idxs
,
graph
,
scope
,
place
,
lazy
,
only_graph
,
param_backup
,
param_shape_backup
)
def
_prune_ops
(
self
,
ops
,
pruned_idxs
,
graph
,
scope
,
place
,
lazy
,
only_graph
,
param_backup
,
param_shape_backup
):
for
idx
,
op
in
enumerate
(
ops
):
if
op
.
type
()
in
[
"conv2d"
,
"deformable_conv"
]:
for
in_var
in
op
.
all_inputs
():
if
graph
.
is_parameter
(
in_var
):
conv_param
=
in_var
self
.
_prune_parameter_by_idx
(
scope
,
[
conv_param
]
+
self
.
_get_accumulator
(
graph
,
conv_param
),
pruned_idxs
,
pruned_axis
=
1
,
place
=
place
,
lazy
=
lazy
,
only_graph
=
only_graph
,
param_backup
=
param_backup
,
param_shape_backup
=
param_shape_backup
)
if
op
.
type
()
==
"depthwise_conv2d"
:
for
in_var
in
op
.
all_inputs
():
if
graph
.
is_parameter
(
in_var
):
conv_param
=
in_var
self
.
_prune_parameter_by_idx
(
scope
,
[
conv_param
]
+
self
.
_get_accumulator
(
graph
,
conv_param
),
pruned_idxs
,
pruned_axis
=
0
,
place
=
place
,
lazy
=
lazy
,
only_graph
=
only_graph
,
param_backup
=
param_backup
,
param_shape_backup
=
param_shape_backup
)
elif
op
.
type
()
==
"elementwise_add"
:
# pruning bias
for
in_var
in
op
.
all_inputs
():
if
graph
.
is_parameter
(
in_var
):
bias_param
=
in_var
self
.
_prune_parameter_by_idx
(
scope
,
[
bias_param
]
+
self
.
_get_accumulator
(
graph
,
bias_param
),
pruned_idxs
,
pruned_axis
=
0
,
place
=
place
,
lazy
=
lazy
,
only_graph
=
only_graph
,
param_backup
=
param_backup
,
param_shape_backup
=
param_shape_backup
)
elif
op
.
type
()
==
"mul"
:
# pruning fc layer
fc_input
=
None
fc_param
=
None
for
in_var
in
op
.
all_inputs
():
if
graph
.
is_parameter
(
in_var
):
fc_param
=
in_var
else
:
fc_input
=
in_var
idx
=
[]
feature_map_size
=
fc_input
.
shape
()[
2
]
*
fc_input
.
shape
()[
3
]
range_idx
=
np
.
array
(
range
(
feature_map_size
))
for
i
in
pruned_idxs
:
idx
+=
list
(
range_idx
+
i
*
feature_map_size
)
corrected_idxs
=
idx
self
.
_prune_parameter_by_idx
(
scope
,
[
fc_param
]
+
self
.
_get_accumulator
(
graph
,
fc_param
),
corrected_idxs
,
pruned_axis
=
0
,
place
=
place
,
lazy
=
lazy
,
only_graph
=
only_graph
,
param_backup
=
param_backup
,
param_shape_backup
=
param_shape_backup
)
elif
op
.
type
()
==
"concat"
:
concat_inputs
=
op
.
all_inputs
()
last_op
=
ops
[
idx
-
1
]
concat_idx
=
None
for
last_op
in
reversed
(
ops
):
for
out_var
in
last_op
.
all_outputs
():
if
out_var
in
concat_inputs
:
concat_idx
=
concat_inputs
.
index
(
out_var
)
break
if
concat_idx
is
not
None
:
break
offset
=
0
for
ci
in
range
(
concat_idx
):
offset
+=
concat_inputs
[
ci
].
shape
()[
1
]
corrected_idxs
=
[
x
+
offset
for
x
in
pruned_idxs
]
related_ops
=
self
.
_forward_search_related_op
(
graph
,
op
)
for
op
in
related_ops
:
_logger
.
debug
(
"concat relate op: {};"
.
format
(
op
))
self
.
_prune_ops
(
related_ops
,
corrected_idxs
,
graph
,
scope
,
place
,
lazy
,
only_graph
,
param_backup
,
param_shape_backup
)
elif
op
.
type
()
==
"batch_norm"
:
bn_inputs
=
op
.
all_inputs
()
in_num
=
len
(
bn_inputs
)
beta
=
bn_inputs
[
0
]
mean
=
bn_inputs
[
1
]
alpha
=
bn_inputs
[
2
]
variance
=
bn_inputs
[
3
]
self
.
_prune_parameter_by_idx
(
scope
,
[
mean
]
+
self
.
_get_accumulator
(
graph
,
mean
),
pruned_idxs
,
pruned_axis
=
0
,
place
=
place
,
lazy
=
lazy
,
only_graph
=
only_graph
,
param_backup
=
param_backup
,
param_shape_backup
=
param_shape_backup
)
self
.
_prune_parameter_by_idx
(
scope
,
[
variance
]
+
self
.
_get_accumulator
(
graph
,
variance
),
pruned_idxs
,
pruned_axis
=
0
,
place
=
place
,
lazy
=
lazy
,
only_graph
=
only_graph
,
param_backup
=
param_backup
,
param_shape_backup
=
param_shape_backup
)
self
.
_prune_parameter_by_idx
(
scope
,
[
alpha
]
+
self
.
_get_accumulator
(
graph
,
alpha
),
pruned_idxs
,
pruned_axis
=
0
,
place
=
place
,
lazy
=
lazy
,
only_graph
=
only_graph
,
param_backup
=
param_backup
,
param_shape_backup
=
param_shape_backup
)
self
.
_prune_parameter_by_idx
(
scope
,
[
beta
]
+
self
.
_get_accumulator
(
graph
,
beta
),
pruned_idxs
,
pruned_axis
=
0
,
place
=
place
,
lazy
=
lazy
,
only_graph
=
only_graph
,
param_backup
=
param_backup
,
param_shape_backup
=
param_shape_backup
)
def
_prune_parameters
(
self
,
graph
,
scope
,
params
,
ratios
,
place
,
lazy
=
False
,
only_graph
=
False
,
param_backup
=
None
,
param_shape_backup
=
None
):
"""
Pruning the given parameters.
Args:
graph(GraphWrapper): The graph to be searched.
scope(fluid.core.Scope): The scope storing paramaters to be pruned.
params(list<str>): A list of parameter names to be pruned.
ratios(list<float>): A list of ratios to be used to pruning parameters.
place(fluid.Place): The device place of filter parameters.
pruned_idx(list): The index of elements to be pruned.
lazy(bool): True means setting the pruned elements to zero.
False means cutting down the pruned elements.
only_graph(bool): True means only modifying the graph.
False means modifying graph and variables in scope.
"""
assert
len
(
params
)
==
len
(
ratios
)
self
.
pruned_list
=
[[],
[]]
pruned_params
=
[]
for
param
,
ratio
in
zip
(
params
,
ratios
):
assert
isinstance
(
param
,
str
)
or
isinstance
(
param
,
unicode
)
if
param
in
self
.
pruned_list
[
0
]:
_logger
.
info
(
"Skip {}"
.
format
(
param
))
continue
_logger
.
info
(
"pruning param: {}"
.
format
(
param
))
if
only_graph
:
param_v
=
graph
.
var
(
param
)
pruned_num
=
int
(
round
(
param_v
.
shape
()[
0
]
*
ratio
))
pruned_idx
=
[
0
]
*
pruned_num
else
:
param_t
=
np
.
array
(
scope
.
find_var
(
param
).
get_tensor
())
pruned_idx
=
self
.
_cal_pruned_idx
(
param_t
,
ratio
,
axis
=
0
)
param
=
graph
.
var
(
param
)
self
.
_forward_pruning_ralated_params
(
graph
,
scope
,
param
,
place
,
ratio
=
ratio
,
lazy
=
lazy
,
only_graph
=
only_graph
,
param_backup
=
param_backup
,
param_shape_backup
=
param_shape_backup
)
ops
=
param
.
outputs
()
for
op
in
ops
:
if
op
.
type
()
in
[
'conv2d'
,
'deformable_conv'
]:
brother_ops
=
self
.
_search_brother_ops
(
graph
,
op
)
for
broher
in
brother_ops
:
_logger
.
debug
(
"pruning brother: {}"
.
format
(
broher
))
for
p
in
graph
.
get_param_by_op
(
broher
):
self
.
_forward_pruning_ralated_params
(
graph
,
scope
,
p
,
place
,
ratio
=
ratio
,
lazy
=
lazy
,
only_graph
=
only_graph
,
param_backup
=
param_backup
,
param_shape_backup
=
param_shape_backup
)
def
_search_brother_ops
(
self
,
graph
,
op_node
):
"""
Search brother operators that was affected by pruning of given operator.
Args:
graph(GraphWrapper): The graph to be searched.
op_node(OpWrapper): The start node for searching.
Returns:
list<VarWrapper>: A list of operators.
"""
_logger
.
debug
(
"######################search: {}######################"
.
format
(
op_node
))
visited
=
[
op_node
.
idx
()]
stack
=
[]
brothers
=
[]
for
op
in
graph
.
next_ops
(
op_node
):
if
(
"conv2d"
not
in
op
.
type
())
and
(
"concat"
not
in
op
.
type
())
and
(
"deformable_conv"
not
in
op
.
type
())
and
(
op
.
type
()
!=
'fc'
)
and
(
not
op
.
is_bwd_op
())
and
(
not
op
.
is_opt_op
()):
stack
.
append
(
op
)
visited
.
append
(
op
.
idx
())
while
len
(
stack
)
>
0
:
top_op
=
stack
.
pop
()
for
parent
in
graph
.
pre_ops
(
top_op
):
if
parent
.
idx
()
not
in
visited
and
(
not
parent
.
is_bwd_op
())
and
(
not
parent
.
is_opt_op
()):
_logger
.
debug
(
"----------go back from {} to {}----------"
.
format
(
top_op
,
parent
))
if
((
'conv2d'
in
parent
.
type
())
or
(
"deformable_conv"
in
parent
.
type
())
or
(
parent
.
type
()
==
'fc'
)):
brothers
.
append
(
parent
)
else
:
stack
.
append
(
parent
)
visited
.
append
(
parent
.
idx
())
for
child
in
graph
.
next_ops
(
top_op
):
if
(
'conv2d'
not
in
child
.
type
())
and
(
"concat"
not
in
child
.
type
())
and
(
'deformable_conv'
not
in
child
.
type
())
and
(
child
.
type
()
!=
'fc'
)
and
(
child
.
idx
()
not
in
visited
)
and
(
not
child
.
is_bwd_op
())
and
(
not
child
.
is_opt_op
()):
stack
.
append
(
child
)
visited
.
append
(
child
.
idx
())
_logger
.
debug
(
"brothers: {}"
.
format
(
brothers
))
_logger
.
debug
(
"######################Finish search######################"
.
format
(
op_node
))
return
brothers
conv_op
=
param
.
outputs
()[
0
]
walker
=
conv2d_walker
(
conv_op
,
pruned_params
=
pruned_params
,
visited
=
visited
)
walker
.
prune
(
param
,
pruned_axis
=
0
,
pruned_idx
=
pruned_idx
)
merge_pruned_params
=
{}
for
param
,
pruned_axis
,
pruned_idx
in
pruned_params
:
if
param
.
name
()
not
in
merge_pruned_params
:
merge_pruned_params
[
param
.
name
()]
=
{}
if
pruned_axis
not
in
merge_pruned_params
[
param
.
name
()]:
merge_pruned_params
[
param
.
name
()][
pruned_axis
]
=
[]
merge_pruned_params
[
param
.
name
()][
pruned_axis
].
append
(
pruned_idx
)
for
param_name
in
merge_pruned_params
:
for
pruned_axis
in
merge_pruned_params
[
param_name
]:
pruned_idx
=
np
.
concatenate
(
merge_pruned_params
[
param_name
][
pruned_axis
])
param
=
graph
.
var
(
param_name
)
_logger
.
debug
(
"{}
\t
{}
\t
{}"
.
format
(
param
.
name
(),
pruned_axis
,
len
(
pruned_idx
)))
if
param_shape_backup
is
not
None
:
origin_shape
=
copy
.
deepcopy
(
param
.
shape
())
param_shape_backup
[
param
.
name
()]
=
origin_shape
new_shape
=
list
(
param
.
shape
())
new_shape
[
pruned_axis
]
-=
len
(
pruned_idx
)
param
.
set_shape
(
new_shape
)
if
not
only_graph
:
param_t
=
scope
.
find_var
(
param
.
name
()).
get_tensor
()
if
param_backup
is
not
None
and
(
param
.
name
()
not
in
param_backup
):
param_backup
[
param
.
name
()]
=
copy
.
deepcopy
(
np
.
array
(
param_t
))
try
:
pruned_param
=
self
.
_prune_tensor
(
np
.
array
(
param_t
),
pruned_idx
,
pruned_axis
=
pruned_axis
,
lazy
=
lazy
)
except
IndexError
as
e
:
_logger
.
error
(
"Pruning {}, but get [{}]"
.
format
(
param
.
name
(
),
e
))
param_t
.
set
(
pruned_param
,
place
)
return
graph
.
program
,
param_backup
,
param_shape_backup
def
_cal_pruned_idx
(
self
,
name
,
param
,
ratio
,
axis
):
def
_cal_pruned_idx
(
self
,
param
,
ratio
,
axis
):
"""
Calculate the index to be pruned on axis by given pruning ratio.
Args:
...
...
tests/test_prune.py
浏览文件 @
790a9ffb
...
...
@@ -15,7 +15,7 @@ import sys
sys
.
path
.
append
(
"../"
)
import
unittest
import
paddle.fluid
as
fluid
from
paddleslim.prune
import
Pruner
from
paddleslim.prune
.walk_pruner
import
Pruner
from
layers
import
conv_bn_layer
...
...
@@ -72,6 +72,7 @@ class TestPrune(unittest.TestCase):
for
param
in
main_program
.
global_block
().
all_parameters
():
if
"weights"
in
param
.
name
:
print
(
"param: {}; param shape: {}"
.
format
(
param
.
name
,
param
.
shape
))
self
.
assertTrue
(
param
.
shape
==
shapes
[
param
.
name
])
...
...
tests/test_prune_walker.py
0 → 100644
浏览文件 @
790a9ffb
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
sys
.
path
.
append
(
"../"
)
import
unittest
import
paddle.fluid
as
fluid
from
paddleslim.prune
import
Pruner
from
paddleslim.core
import
GraphWrapper
from
paddleslim.prune
import
conv2d
as
conv2d_walker
from
layers
import
conv_bn_layer
class
TestPrune
(
unittest
.
TestCase
):
def
test_prune
(
self
):
main_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
# X X O X O
# conv1-->conv2-->sum1-->conv3-->conv4-->sum2-->conv5-->conv6
# | ^ | ^
# |____________| |____________________|
#
# X: prune output channels
# O: prune input channels
with
fluid
.
program_guard
(
main_program
,
startup_program
):
input
=
fluid
.
data
(
name
=
"image"
,
shape
=
[
None
,
3
,
16
,
16
])
conv1
=
conv_bn_layer
(
input
,
8
,
3
,
"conv1"
)
conv2
=
conv_bn_layer
(
conv1
,
8
,
3
,
"conv2"
)
sum1
=
conv1
+
conv2
conv3
=
conv_bn_layer
(
sum1
,
8
,
3
,
"conv3"
)
conv4
=
conv_bn_layer
(
conv3
,
8
,
3
,
"conv4"
)
sum2
=
conv4
+
sum1
conv5
=
conv_bn_layer
(
sum2
,
8
,
3
,
"conv5"
)
conv6
=
conv_bn_layer
(
conv5
,
8
,
3
,
"conv6"
)
shapes
=
{}
for
param
in
main_program
.
global_block
().
all_parameters
():
shapes
[
param
.
name
]
=
param
.
shape
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
scope
=
fluid
.
Scope
()
exe
.
run
(
startup_program
,
scope
=
scope
)
graph
=
GraphWrapper
(
main_program
)
conv_op
=
graph
.
var
(
"conv4_weights"
).
outputs
()[
0
]
walker
=
conv2d_walker
(
conv_op
,
[])
walker
.
prune
(
graph
.
var
(
"conv4_weights"
),
pruned_axis
=
0
,
pruned_idx
=
[])
print
walker
.
pruned_params
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录