From 66c1680c96da94541527e45bab7fc2e53b0d1d41 Mon Sep 17 00:00:00 2001 From: minghaoBD <79566150+minghaoBD@users.noreply.github.com> Date: Fri, 20 May 2022 17:07:30 +0800 Subject: [PATCH] =?UTF-8?q?=E6=9B=B4=E6=96=B0=E9=9D=9E=E7=BB=93=E6=9E=84?= =?UTF-8?q?=E5=8C=96=E7=A8=80=E7=96=8F/=E5=8D=8A=E7=BB=93=E6=9E=84?= =?UTF-8?q?=E5=8C=96=E7=A8=80=E7=96=8F=E5=AE=9E=E9=AA=8C=E6=95=B0=E6=8D=AE?= =?UTF-8?q?=20(#1081)?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * Update README.md * Update README.md * Update README.md --- demo/unstructured_prune/README.md | 38 ++++++++++++++++++++++--------- 1 file changed, 27 insertions(+), 11 deletions(-) diff --git a/demo/unstructured_prune/README.md b/demo/unstructured_prune/README.md index 82e925c6..b25afcee 100644 --- a/demo/unstructured_prune/README.md +++ b/demo/unstructured_prune/README.md @@ -168,14 +168,30 @@ python evaluate.py --h ## 实验结果 -| 模型 | 数据集 | 压缩方法 | 压缩率| Top-1/Top-5 Acc | lr | threshold | epoch | -|:--:|:---:|:--:|:--:|:--:|:--:|:--:|:--:| -| MobileNetV1 | ImageNet | Baseline | - | 70.99%/89.68% | - | - | - | -| MobileNetV1 | ImageNet | ratio | 55.19% | 70.87%/89.80% (-0.12%/+0.12%) | 0.05 | - | 68 | -| MobileNetV1 | ImageNet | threshold | 49.49% | 71.22%/89.78% (+0.23%/+0.10%) | 0.05 | 0.01 | 93 | -| MobileNetV1 | Imagenet | ratio, 1x1conv, GMP | 75% | 70.49%/89.48% (-0.5%/-0.20%) | 0.005 | - | 108 | -| MobileNetV1 | Imagenet | ratio, 1x1conv, GMP | 80% | 70.02%/89.26% (-0.97%/-0.42%) | 0.005 | - | 108 | -| YOLO v3 | VOC | - | - |76.24% | - | - | - | -| YOLO v3 | VOC |threshold | 56.50% | 77.21%(+0.97%) | 0.001 | 0.01 |150k iterations| - -**注意**,上述`ratio, 1x1conv, GMP`代表根据比例剪裁,只稀疏化1x1conv层参数,并且使用GMP训练方式。 +| 模型 | 数据集 | 压缩方法 | 稀疏度 | 稀疏模型精度 | 精度变化 | +|:--:|:---:|:--:|:--:|:--:|:--:| +| MobileNetV1 | ImageNet | Baseline | - | 70.99% | - | +| MobileNetV1 | ImageNet | ratio | 55.19% | 70.87% | -0.12% | +| MobileNetV1 | ImageNet | threshold | 49.49% | 71.22% | +0.23% | +| MobileNetV1 | Imagenet | ratio, 1x1conv, GMP | 75% | 70.49% | -0.50% | +| MobileNetV1 | Imagenet | ratio, 1x1conv, GMP, 半结构化稀疏 | 75% | 68.80% | -2.19% | +| MobileNetV1 | Imagenet | ratio, 1x1conv, GMP | 80% | 70.02% | -0.97% | +| YOLO v3 | VOC | Baseline | - |76.24% | - | +| YOLO v3 | VOC |threshold | 56.50% | 77.21% | +0.97% | +| PicoDet-m-1.0 | COCO | Baseline | - | 30.90% | - | +| PicoDet-m-1.0 | COCO | ratio, 1x1conv, GMP | 75% | 29.40% | -1.50% | +| PP-HumanSeg-Lite | 人像分割数据集 | Baseline | - | 92.87% | - | +| PP-HumanSeg-Lite | 人像分割数据集 | ratio, 1x1conv, GMP | 75% | 92.57% | -0.30% | +| PP-HumanSeg-Lite | 人像分割数据集 | ratio, 1x1conv, GMP, 半结构化稀疏 | 75% | 92.20% | -0.67% | + +**术语说明** + +Baseline: 未经压缩的稠密模型 + +ratio/threshold: [按照比例或者阈值稀疏](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/api_cn/static/prune/unstructured_prune_api.rst#unstrucuturedpruner) + +1x1conv: [只稀疏网络中的 1x1 卷积参数](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/api_cn/static/prune/unstructured_prune_api.rst#unstrucuturedpruner) + +GMP:[渐进稀疏算法](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/demo/unstructured_prune/README_GMP.md) + +半结构化稀疏:按照 [m=2, n=1](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/api_cn/static/prune/unstructured_prune_api.rst#unstrucuturedpruner) 的方式稀疏 -- GitLab