From 6181003b0c6163b6817728eeeac4426866e19680 Mon Sep 17 00:00:00 2001 From: Bai Yifan <me@ethanbai.com> Date: Fri, 22 Jan 2021 22:18:18 +0800 Subject: [PATCH] [Cherry-pick]fix hardsigmoid/hardswish (#608) --- demo/dygraph/quant/mobilenet_v3.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/demo/dygraph/quant/mobilenet_v3.py b/demo/dygraph/quant/mobilenet_v3.py index e56c8990..f9e69962 100644 --- a/demo/dygraph/quant/mobilenet_v3.py +++ b/demo/dygraph/quant/mobilenet_v3.py @@ -21,7 +21,6 @@ import paddle from paddle import ParamAttr import paddle.nn as nn import paddle.nn.functional as F -from paddle.nn.functional.activation import hard_sigmoid, hard_swish from paddle.nn import Conv2D, BatchNorm, Linear, Dropout from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D from paddle.regularizer import L2Decay @@ -165,7 +164,7 @@ class MobileNetV3(nn.Layer): x = self.pool(x) x = self.last_conv(x) - x = hard_swish(x) + x = paddle.nn.functional.activation.hardswish(x) x = paddle.reshape(x, shape=[x.shape[0], x.shape[1]]) x = self.out(x) @@ -303,7 +302,8 @@ class SEModule(nn.Layer): outputs = self.conv1(outputs) outputs = F.relu(outputs) outputs = self.conv2(outputs) - outputs = hard_sigmoid(outputs) + outputs = paddle.nn.functional.activation.hardsigmoid( + outputs, slope=0.2) return paddle.multiply(x=inputs, y=outputs) -- GitLab