Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
5590daf9
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
1 年多 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5590daf9
编写于
12月 09, 2020
作者:
B
Bai Yifan
提交者:
GitHub
12月 09, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add dygraph qat demo (#537)
上级
1e12c326
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
817 addition
and
1 deletion
+817
-1
demo/dygraph/quant/README.md
demo/dygraph/quant/README.md
+95
-0
demo/dygraph/quant/mobilenet_v3.py
demo/dygraph/quant/mobilenet_v3.py
+357
-0
demo/dygraph/quant/optimizer.py
demo/dygraph/quant/optimizer.py
+55
-0
demo/dygraph/quant/train.py
demo/dygraph/quant/train.py
+309
-0
paddleslim/dygraph/quant/quanter.py
paddleslim/dygraph/quant/quanter.py
+1
-1
未找到文件。
demo/dygraph/quant/README.md
0 → 100755
浏览文件 @
5590daf9
# 动态图量化训练
本示例介绍如何对动态图模型进行量化训练,示例以常用的MobileNetV1和MobileNetV3模型为例,介绍如何对其进行量化训练。
## 分类模型的量化训练流程
### 准备数据
在当前目录下创建
``data``
文件夹,将
``ImageNet``
数据集解压在
``data``
文件夹下,解压后
``data/ILSVRC2012``
文件夹下应包含以下文件:
-
``'train'``
文件夹,训练图片
-
``'train_list.txt'``
文件
-
``'val'``
文件夹,验证图片
-
``'val_list.txt'``
文件
### 准备需要量化的模型
-
对于paddle vision支持的
[
模型
](
https://github.com/PaddlePaddle/Paddle/tree/develop/python/paddle/vision/models
)
:
`[lenet, mobilenetv1, mobilenetv2, resnet, vgg]`
可以直接使用vision内置的模型定义和ImageNet预训练权重
-
对于paddle vision暂未支持的模型,例如mobilenetv3,需要自行定义好模型结构以及准备相应的预训练权重
-
本示例使用的是经过蒸馏的mobilenetv3模型,在ImageNet数据集上Top1精度达到78.96:
[
预训练权重下载
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_pretrained.tar
)
### 配置量化参数
```
quant_config = {
'weight_preprocess_type': None,
'activation_preprocess_type': None,
'weight_quantize_type': 'channel_wise_abs_max',
'activation_quantize_type': 'moving_average_abs_max',
'weight_bits': 8,
'activation_bits': 8,
'dtype': 'int8',
'window_size': 10000,
'moving_rate': 0.9,
'quantizable_layer_type': ['Conv2D', 'Linear'],
}
```
-
`'weight_preprocess_type'`
:代表对量化模型权重参数预处理的方法,目前支持PACT方法,如需使用可以改为'PACT';默认为None,代表不对权重进行任何预处理。
-
`'activation_preprocess_type'`
:代表对量化模型激活值预处理的方法,目前支持PACT方法,如需使用可以改为'PACT';默认为None,代表不对激活值进行任何预处理。
-
`weight_quantize_type`
:代表模型权重的量化方式,可选的有['abs_max', 'moving_average_abs_max', 'channel_wise_abs_max'],默认为channel_wise_abs_max
-
`activation_quantize_type`
:代表模型激活值的量化方式,可选的有['abs_max', 'moving_average_abs_max'],默认为moving_average_abs_max
-
`quantizable_layer_type`
:代表量化OP的类型,目前支持Conv2D和Linear
### 插入量化算子,得到量化训练模型
```
python
quanter
=
QAT
(
config
=
quant_config
)
quanter
.
quantize
(
net
)
```
### 量化训练结束,保存量化模型
```
python
quanter
.
save_quantized_model
(
net
,
'save_dir'
,
input_spec
=
[
paddle
.
static
.
InputSpec
(
shape
=
[
None
,
3
,
224
,
224
],
dtype
=
'float32'
)])
```
### 训练命令
-
MobileNetV1
我们使用普通的量化训练方法即可,启动命令如下:
```
bash
# 单卡训练
python train.py
--model
=
'mobilenet_v1'
# 多卡训练,以0到3号卡为例
python
-m
paddle.distributed.launch
--gpus
=
"0,1,2,3"
train.py
--model
=
'mobilenet_v1'
```
-
MobileNetV3
对于MobileNetV3,直接使用普通的量化损失较大,为降低量化损失,可以使用PACT的量化方法,启动命令如下:
```
bash
# 单卡训练
python train.py
--lr
=
0.001
--use_pact
=
True
--num_epochs
=
30
--l2_decay
=
2e-5
--ls_epsilon
=
0.1
# 多卡训练,以0到3号卡为例
python
-m
paddle.distributed.launch
--gpus
=
"0,1,2,3"
train.py
--lr
=
0.001
--use_pact
=
True
--num_epochs
=
60
--l2_decay
=
2e-5
--ls_epsilon
=
0.1
```
### 量化结果
| 模型 | FP32模型准确率(Top1/Top5) | 量化方法 | 量化模型准确率(Top1/Top5) |
| ----------- | --------------------------- | ------------ | --------------------------- |
| MobileNetV1 | 70.99/89.65 | 普通在线量化 | 70.63/89.65 |
| MobileNetV3 | 78.96/94.48 | PACT在线量化 | 77.52/93.77 |
demo/dygraph/quant/mobilenet_v3.py
0 → 100644
浏览文件 @
5590daf9
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
numpy
as
np
import
paddle
from
paddle
import
ParamAttr
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
paddle.nn.functional.activation
import
hard_sigmoid
,
hard_swish
from
paddle.nn
import
Conv2D
,
BatchNorm
,
Linear
,
Dropout
from
paddle.nn
import
AdaptiveAvgPool2D
,
MaxPool2D
,
AvgPool2D
from
paddle.regularizer
import
L2Decay
import
math
__all__
=
[
"MobileNetV3_small_x0_35"
,
"MobileNetV3_small_x0_5"
,
"MobileNetV3_small_x0_75"
,
"MobileNetV3_small_x1_0"
,
"MobileNetV3_small_x1_25"
,
"MobileNetV3_large_x0_35"
,
"MobileNetV3_large_x0_5"
,
"MobileNetV3_large_x0_75"
,
"MobileNetV3_large_x1_0"
,
"MobileNetV3_large_x1_25"
]
def
make_divisible
(
v
,
divisor
=
8
,
min_value
=
None
):
if
min_value
is
None
:
min_value
=
divisor
new_v
=
max
(
min_value
,
int
(
v
+
divisor
/
2
)
//
divisor
*
divisor
)
if
new_v
<
0.9
*
v
:
new_v
+=
divisor
return
new_v
class
MobileNetV3
(
nn
.
Layer
):
def
__init__
(
self
,
scale
=
1.0
,
model_name
=
"small"
,
dropout_prob
=
0.2
,
class_dim
=
1000
):
super
(
MobileNetV3
,
self
).
__init__
()
inplanes
=
16
if
model_name
==
"large"
:
self
.
cfg
=
[
# k, exp, c, se, nl, s,
[
3
,
16
,
16
,
False
,
"relu"
,
1
],
[
3
,
64
,
24
,
False
,
"relu"
,
2
],
[
3
,
72
,
24
,
False
,
"relu"
,
1
],
[
5
,
72
,
40
,
True
,
"relu"
,
2
],
[
5
,
120
,
40
,
True
,
"relu"
,
1
],
[
5
,
120
,
40
,
True
,
"relu"
,
1
],
[
3
,
240
,
80
,
False
,
"hard_swish"
,
2
],
[
3
,
200
,
80
,
False
,
"hard_swish"
,
1
],
[
3
,
184
,
80
,
False
,
"hard_swish"
,
1
],
[
3
,
184
,
80
,
False
,
"hard_swish"
,
1
],
[
3
,
480
,
112
,
True
,
"hard_swish"
,
1
],
[
3
,
672
,
112
,
True
,
"hard_swish"
,
1
],
[
5
,
672
,
160
,
True
,
"hard_swish"
,
2
],
[
5
,
960
,
160
,
True
,
"hard_swish"
,
1
],
[
5
,
960
,
160
,
True
,
"hard_swish"
,
1
],
]
self
.
cls_ch_squeeze
=
960
self
.
cls_ch_expand
=
1280
elif
model_name
==
"small"
:
self
.
cfg
=
[
# k, exp, c, se, nl, s,
[
3
,
16
,
16
,
True
,
"relu"
,
2
],
[
3
,
72
,
24
,
False
,
"relu"
,
2
],
[
3
,
88
,
24
,
False
,
"relu"
,
1
],
[
5
,
96
,
40
,
True
,
"hard_swish"
,
2
],
[
5
,
240
,
40
,
True
,
"hard_swish"
,
1
],
[
5
,
240
,
40
,
True
,
"hard_swish"
,
1
],
[
5
,
120
,
48
,
True
,
"hard_swish"
,
1
],
[
5
,
144
,
48
,
True
,
"hard_swish"
,
1
],
[
5
,
288
,
96
,
True
,
"hard_swish"
,
2
],
[
5
,
576
,
96
,
True
,
"hard_swish"
,
1
],
[
5
,
576
,
96
,
True
,
"hard_swish"
,
1
],
]
self
.
cls_ch_squeeze
=
576
self
.
cls_ch_expand
=
1280
else
:
raise
NotImplementedError
(
"mode[{}_model] is not implemented!"
.
format
(
model_name
))
self
.
conv1
=
ConvBNLayer
(
in_c
=
3
,
out_c
=
make_divisible
(
inplanes
*
scale
),
filter_size
=
3
,
stride
=
2
,
padding
=
1
,
num_groups
=
1
,
if_act
=
True
,
act
=
"hard_swish"
,
name
=
"conv1"
)
self
.
block_list
=
[]
i
=
0
inplanes
=
make_divisible
(
inplanes
*
scale
)
for
(
k
,
exp
,
c
,
se
,
nl
,
s
)
in
self
.
cfg
:
block
=
self
.
add_sublayer
(
"conv"
+
str
(
i
+
2
),
ResidualUnit
(
in_c
=
inplanes
,
mid_c
=
make_divisible
(
scale
*
exp
),
out_c
=
make_divisible
(
scale
*
c
),
filter_size
=
k
,
stride
=
s
,
use_se
=
se
,
act
=
nl
,
name
=
"conv"
+
str
(
i
+
2
)))
self
.
block_list
.
append
(
block
)
inplanes
=
make_divisible
(
scale
*
c
)
i
+=
1
self
.
last_second_conv
=
ConvBNLayer
(
in_c
=
inplanes
,
out_c
=
make_divisible
(
scale
*
self
.
cls_ch_squeeze
),
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
num_groups
=
1
,
if_act
=
True
,
act
=
"hard_swish"
,
name
=
"conv_last"
)
self
.
pool
=
AdaptiveAvgPool2D
(
1
)
self
.
last_conv
=
Conv2D
(
in_channels
=
make_divisible
(
scale
*
self
.
cls_ch_squeeze
),
out_channels
=
self
.
cls_ch_expand
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
weight_attr
=
ParamAttr
(
name
=
"last_1x1_conv_weights"
),
bias_attr
=
False
)
self
.
out
=
Linear
(
self
.
cls_ch_expand
,
class_dim
,
weight_attr
=
ParamAttr
(
"fc_weights"
),
bias_attr
=
ParamAttr
(
name
=
"fc_offset"
))
def
forward
(
self
,
inputs
,
label
=
None
):
x
=
self
.
conv1
(
inputs
)
for
block
in
self
.
block_list
:
x
=
block
(
x
)
x
=
self
.
last_second_conv
(
x
)
x
=
self
.
pool
(
x
)
x
=
self
.
last_conv
(
x
)
x
=
hard_swish
(
x
)
x
=
paddle
.
reshape
(
x
,
shape
=
[
x
.
shape
[
0
],
x
.
shape
[
1
]])
x
=
self
.
out
(
x
)
return
x
class
ConvBNLayer
(
nn
.
Layer
):
def
__init__
(
self
,
in_c
,
out_c
,
filter_size
,
stride
,
padding
,
num_groups
=
1
,
if_act
=
True
,
act
=
None
,
use_cudnn
=
True
,
name
=
""
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
if_act
=
if_act
self
.
act
=
act
self
.
conv
=
Conv2D
(
in_channels
=
in_c
,
out_channels
=
out_c
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
groups
=
num_groups
,
weight_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
self
.
bn
=
BatchNorm
(
num_channels
=
out_c
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_bn_scale"
,
regularizer
=
L2Decay
(
0.0
)),
bias_attr
=
ParamAttr
(
name
=
name
+
"_bn_offset"
,
regularizer
=
L2Decay
(
0.0
)),
moving_mean_name
=
name
+
"_bn_mean"
,
moving_variance_name
=
name
+
"_bn_variance"
)
def
forward
(
self
,
x
):
x
=
self
.
conv
(
x
)
x
=
self
.
bn
(
x
)
if
self
.
if_act
:
if
self
.
act
==
"relu"
:
x
=
F
.
relu
(
x
)
elif
self
.
act
==
"hard_swish"
:
x
=
hard_swish
(
x
)
else
:
print
(
"The activation function is selected incorrectly."
)
exit
()
return
x
class
ResidualUnit
(
nn
.
Layer
):
def
__init__
(
self
,
in_c
,
mid_c
,
out_c
,
filter_size
,
stride
,
use_se
,
act
=
None
,
name
=
''
):
super
(
ResidualUnit
,
self
).
__init__
()
self
.
if_shortcut
=
stride
==
1
and
in_c
==
out_c
self
.
if_se
=
use_se
self
.
expand_conv
=
ConvBNLayer
(
in_c
=
in_c
,
out_c
=
mid_c
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
if_act
=
True
,
act
=
act
,
name
=
name
+
"_expand"
)
self
.
bottleneck_conv
=
ConvBNLayer
(
in_c
=
mid_c
,
out_c
=
mid_c
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
int
((
filter_size
-
1
)
//
2
),
num_groups
=
mid_c
,
if_act
=
True
,
act
=
act
,
name
=
name
+
"_depthwise"
)
if
self
.
if_se
:
self
.
mid_se
=
SEModule
(
mid_c
,
name
=
name
+
"_se"
)
self
.
linear_conv
=
ConvBNLayer
(
in_c
=
mid_c
,
out_c
=
out_c
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
if_act
=
False
,
act
=
None
,
name
=
name
+
"_linear"
)
def
forward
(
self
,
inputs
):
x
=
self
.
expand_conv
(
inputs
)
x
=
self
.
bottleneck_conv
(
x
)
if
self
.
if_se
:
x
=
self
.
mid_se
(
x
)
x
=
self
.
linear_conv
(
x
)
if
self
.
if_shortcut
:
x
=
paddle
.
add
(
inputs
,
x
)
return
x
class
SEModule
(
nn
.
Layer
):
def
__init__
(
self
,
channel
,
reduction
=
4
,
name
=
""
):
super
(
SEModule
,
self
).
__init__
()
self
.
avg_pool
=
AdaptiveAvgPool2D
(
1
)
self
.
conv1
=
Conv2D
(
in_channels
=
channel
,
out_channels
=
channel
//
reduction
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
weight_attr
=
ParamAttr
(
name
=
name
+
"_1_weights"
),
bias_attr
=
ParamAttr
(
name
=
name
+
"_1_offset"
))
self
.
conv2
=
Conv2D
(
in_channels
=
channel
//
reduction
,
out_channels
=
channel
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
weight_attr
=
ParamAttr
(
name
+
"_2_weights"
),
bias_attr
=
ParamAttr
(
name
=
name
+
"_2_offset"
))
def
forward
(
self
,
inputs
):
outputs
=
self
.
avg_pool
(
inputs
)
outputs
=
self
.
conv1
(
outputs
)
outputs
=
F
.
relu
(
outputs
)
outputs
=
self
.
conv2
(
outputs
)
outputs
=
hard_sigmoid
(
outputs
)
return
paddle
.
multiply
(
x
=
inputs
,
y
=
outputs
)
def
MobileNetV3_small_x0_35
(
**
args
):
model
=
MobileNetV3
(
model_name
=
"small"
,
scale
=
0.35
,
**
args
)
return
model
def
MobileNetV3_small_x0_5
(
**
args
):
model
=
MobileNetV3
(
model_name
=
"small"
,
scale
=
0.5
,
**
args
)
return
model
def
MobileNetV3_small_x0_75
(
**
args
):
model
=
MobileNetV3
(
model_name
=
"small"
,
scale
=
0.75
,
**
args
)
return
model
def
MobileNetV3_small_x1_0
(
**
args
):
model
=
MobileNetV3
(
model_name
=
"small"
,
scale
=
1.0
,
**
args
)
return
model
def
MobileNetV3_small_x1_25
(
**
args
):
model
=
MobileNetV3
(
model_name
=
"small"
,
scale
=
1.25
,
**
args
)
return
model
def
MobileNetV3_large_x0_35
(
**
args
):
model
=
MobileNetV3
(
model_name
=
"large"
,
scale
=
0.35
,
**
args
)
return
model
def
MobileNetV3_large_x0_5
(
**
args
):
model
=
MobileNetV3
(
model_name
=
"large"
,
scale
=
0.5
,
**
args
)
return
model
def
MobileNetV3_large_x0_75
(
**
args
):
model
=
MobileNetV3
(
model_name
=
"large"
,
scale
=
0.75
,
**
args
)
return
model
def
MobileNetV3_large_x1_0
(
**
args
):
model
=
MobileNetV3
(
model_name
=
"large"
,
scale
=
1.0
,
**
args
)
return
model
def
MobileNetV3_large_x1_25
(
**
args
):
model
=
MobileNetV3
(
model_name
=
"large"
,
scale
=
1.25
,
**
args
)
return
model
demo/dygraph/quant/optimizer.py
0 → 100644
浏览文件 @
5590daf9
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
math
import
paddle
def
piecewise_decay
(
net
,
device_num
,
args
):
step
=
int
(
math
.
ceil
(
float
(
args
.
total_images
)
/
(
args
.
batch_size
*
device_num
)))
bd
=
[
step
*
e
for
e
in
args
.
step_epochs
]
lr
=
[
args
.
lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
bd
)
+
1
)]
learning_rate
=
paddle
.
optimizer
.
lr
.
PiecewiseDecay
(
boundaries
=
bd
,
values
=
lr
,
verbose
=
False
)
optimizer
=
paddle
.
optimizer
.
Momentum
(
parameters
=
net
.
parameters
(),
learning_rate
=
learning_rate
,
momentum
=
args
.
momentum_rate
,
weight_decay
=
paddle
.
regularizer
.
L2Decay
(
args
.
l2_decay
))
return
optimizer
,
learning_rate
def
cosine_decay
(
net
,
device_num
,
args
):
step
=
int
(
math
.
ceil
(
float
(
args
.
total_images
)
/
(
args
.
batch_size
*
device_num
)))
learning_rate
=
paddle
.
optimizer
.
lr
.
CosineAnnealingDecay
(
learning_rate
=
args
.
lr
,
T_max
=
step
*
args
.
num_epochs
,
verbose
=
False
)
optimizer
=
paddle
.
optimizer
.
Momentum
(
parameters
=
net
.
parameters
(),
learning_rate
=
learning_rate
,
momentum
=
args
.
momentum_rate
,
weight_decay
=
paddle
.
regularizer
.
L2Decay
(
args
.
l2_decay
))
return
optimizer
,
learning_rate
def
create_optimizer
(
net
,
device_num
,
args
):
if
args
.
lr_strategy
==
"piecewise_decay"
:
return
piecewise_decay
(
net
,
device_num
,
args
)
elif
args
.
lr_strategy
==
"cosine_decay"
:
return
cosine_decay
(
net
,
device_num
,
args
)
demo/dygraph/quant/train.py
0 → 100644
浏览文件 @
5590daf9
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
sys
import
logging
import
paddle
import
argparse
import
functools
import
math
import
time
import
numpy
as
np
from
paddle.distributed
import
ParallelEnv
from
paddle.static
import
load_program_state
from
paddle.vision.models
import
mobilenet_v1
from
paddleslim.common
import
get_logger
from
paddleslim.dygraph.quant
import
QAT
sys
.
path
.
append
(
os
.
path
.
join
(
os
.
path
.
dirname
(
"__file__"
)))
from
mobilenet_v3
import
MobileNetV3_large_x1_0
from
optimizer
import
create_optimizer
sys
.
path
.
append
(
os
.
path
.
join
(
os
.
path
.
dirname
(
"__file__"
),
os
.
path
.
pardir
,
os
.
path
.
pardir
))
from
utility
import
add_arguments
,
print_arguments
_logger
=
get_logger
(
__name__
,
level
=
logging
.
INFO
)
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
# yapf: disable
add_arg
(
'batch_size'
,
int
,
256
,
"Minibatch size."
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Whether to use GPU or not."
)
add_arg
(
'model'
,
str
,
"mobilenet_v3"
,
"The target model."
)
add_arg
(
'pretrained_model'
,
str
,
"MobileNetV3_large_x1_0_ssld_pretrained"
,
"Whether to use pretrained model."
)
add_arg
(
'lr'
,
float
,
0.0001
,
"The learning rate used to fine-tune pruned model."
)
add_arg
(
'lr_strategy'
,
str
,
"piecewise_decay"
,
"The learning rate decay strategy."
)
add_arg
(
'l2_decay'
,
float
,
3e-5
,
"The l2_decay parameter."
)
add_arg
(
'ls_epsilon'
,
float
,
0.0
,
"Label smooth epsilon."
)
add_arg
(
'use_pact'
,
bool
,
False
,
"Whether to use PACT method."
)
add_arg
(
'momentum_rate'
,
float
,
0.9
,
"The value of momentum_rate."
)
add_arg
(
'num_epochs'
,
int
,
1
,
"The number of total epochs."
)
add_arg
(
'total_images'
,
int
,
1281167
,
"The number of total training images."
)
add_arg
(
'data'
,
str
,
"imagenet"
,
"Which data to use. 'mnist' or 'imagenet'"
)
add_arg
(
'log_period'
,
int
,
10
,
"Log period in batches."
)
add_arg
(
'model_save_dir'
,
str
,
"./"
,
"model save directory."
)
parser
.
add_argument
(
'--step_epochs'
,
nargs
=
'+'
,
type
=
int
,
default
=
[
10
,
20
,
30
],
help
=
"piecewise decay step"
)
# yapf: enable
def
load_dygraph_pretrain
(
model
,
path
=
None
,
load_static_weights
=
False
):
if
not
(
os
.
path
.
isdir
(
path
)
or
os
.
path
.
exists
(
path
+
'.pdparams'
)):
raise
ValueError
(
"Model pretrain path {} does not "
"exists."
.
format
(
path
))
if
load_static_weights
:
pre_state_dict
=
load_program_state
(
path
)
param_state_dict
=
{}
model_dict
=
model
.
state_dict
()
for
key
in
model_dict
.
keys
():
weight_name
=
model_dict
[
key
].
name
if
weight_name
in
pre_state_dict
.
keys
():
print
(
'Load weight: {}, shape: {}'
.
format
(
weight_name
,
pre_state_dict
[
weight_name
].
shape
))
param_state_dict
[
key
]
=
pre_state_dict
[
weight_name
]
else
:
param_state_dict
[
key
]
=
model_dict
[
key
]
model
.
set_dict
(
param_state_dict
)
return
param_state_dict
=
paddle
.
load
(
path
+
".pdparams"
)
model
.
set_dict
(
param_state_dict
)
return
def
compress
(
args
):
if
args
.
data
==
"mnist"
:
train_dataset
=
paddle
.
vision
.
datasets
.
MNIST
(
mode
=
'train'
)
val_dataset
=
paddle
.
vision
.
datasets
.
MNIST
(
mode
=
'test'
)
class_dim
=
10
image_shape
=
"1,28,28"
args
.
total_images
=
60000
elif
args
.
data
==
"imagenet"
:
import
imagenet_reader
as
reader
train_dataset
=
reader
.
ImageNetDataset
(
mode
=
'train'
)
val_dataset
=
reader
.
ImageNetDataset
(
mode
=
'val'
)
class_dim
=
1000
image_shape
=
"3,224,224"
else
:
raise
ValueError
(
"{} is not supported."
.
format
(
args
.
data
))
trainer_num
=
paddle
.
distributed
.
get_world_size
()
use_data_parallel
=
trainer_num
!=
1
place
=
paddle
.
set_device
(
'gpu'
if
args
.
use_gpu
else
'cpu'
)
# model definition
if
use_data_parallel
:
paddle
.
distributed
.
init_parallel_env
()
if
args
.
model
==
"mobilenet_v1"
:
pretrain
=
True
if
args
.
data
==
"imagenet"
else
False
net
=
mobilenet_v1
(
pretrained
=
pretrained
)
elif
args
.
model
==
"mobilenet_v3"
:
net
=
MobileNetV3_large_x1_0
()
if
args
.
data
==
"imagenet"
:
load_dygraph_pretrain
(
net
,
args
.
pretrained_model
,
True
)
else
:
raise
ValueError
(
"{} is not supported."
.
format
(
args
.
model
))
_logger
.
info
(
"Origin model summary:"
)
paddle
.
summary
(
net
,
(
1
,
3
,
224
,
224
))
############################################################################################################
# 1. quantization configs
############################################################################################################
quant_config
=
{
# weight preprocess type, default is None and no preprocessing is performed.
'weight_preprocess_type'
:
None
,
# activation preprocess type, default is None and no preprocessing is performed.
'activation_preprocess_type'
:
None
,
# weight quantize type, default is 'channel_wise_abs_max'
'weight_quantize_type'
:
'channel_wise_abs_max'
,
# activation quantize type, default is 'moving_average_abs_max'
'activation_quantize_type'
:
'moving_average_abs_max'
,
# weight quantize bit num, default is 8
'weight_bits'
:
8
,
# activation quantize bit num, default is 8
'activation_bits'
:
8
,
# data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
'dtype'
:
'int8'
,
# window size for 'range_abs_max' quantization. default is 10000
'window_size'
:
10000
,
# The decay coefficient of moving average, default is 0.9
'moving_rate'
:
0.9
,
# for dygraph quantization, layers of type in quantizable_layer_type will be quantized
'quantizable_layer_type'
:
[
'Conv2D'
,
'Linear'
],
}
if
args
.
use_pact
:
quant_config
[
'activation_preprocess_type'
]
=
'PACT'
############################################################################################################
# 2. Quantize the model with QAT (quant aware training)
############################################################################################################
quanter
=
QAT
(
config
=
quant_config
)
quanter
.
quantize
(
net
)
_logger
.
info
(
"QAT model summary:"
)
paddle
.
summary
(
net
,
(
1
,
3
,
224
,
224
))
opt
,
lr
=
create_optimizer
(
net
,
trainer_num
,
args
)
if
use_data_parallel
:
net
=
paddle
.
DataParallel
(
net
)
train_batch_sampler
=
paddle
.
io
.
DistributedBatchSampler
(
train_dataset
,
batch_size
=
args
.
batch_size
,
shuffle
=
True
,
drop_last
=
True
)
train_loader
=
paddle
.
io
.
DataLoader
(
train_dataset
,
batch_sampler
=
train_batch_sampler
,
places
=
place
,
return_list
=
True
,
num_workers
=
4
)
valid_loader
=
paddle
.
io
.
DataLoader
(
val_dataset
,
places
=
place
,
batch_size
=
args
.
batch_size
,
shuffle
=
False
,
drop_last
=
False
,
return_list
=
True
,
num_workers
=
4
)
@
paddle
.
no_grad
()
def
test
(
epoch
,
net
):
net
.
eval
()
batch_id
=
0
acc_top1_ns
=
[]
acc_top5_ns
=
[]
for
data
in
valid_loader
():
image
=
data
[
0
]
label
=
data
[
1
]
start_time
=
time
.
time
()
out
=
net
(
image
)
acc_top1
=
paddle
.
metric
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
1
)
acc_top5
=
paddle
.
metric
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
5
)
end_time
=
time
.
time
()
if
batch_id
%
args
.
log_period
==
0
:
_logger
.
info
(
"Eval epoch[{}] batch[{}] - acc_top1: {:.6f}; acc_top5: {:.6f}; time: {:.3f}"
.
format
(
epoch
,
batch_id
,
np
.
mean
(
acc_top1
.
numpy
()),
np
.
mean
(
acc_top5
.
numpy
()),
end_time
-
start_time
))
acc_top1_ns
.
append
(
np
.
mean
(
acc_top1
.
numpy
()))
acc_top5_ns
.
append
(
np
.
mean
(
acc_top5
.
numpy
()))
batch_id
+=
1
_logger
.
info
(
"Final eval epoch[{}] - acc_top1: {:.6f}; acc_top5: {:.6f}"
.
format
(
epoch
,
np
.
mean
(
np
.
array
(
acc_top1_ns
)),
np
.
mean
(
np
.
array
(
acc_top5_ns
))))
return
np
.
mean
(
np
.
array
(
acc_top1_ns
))
def
cross_entropy
(
input
,
target
,
ls_epsilon
):
if
ls_epsilon
>
0
:
if
target
.
shape
[
-
1
]
!=
class_dim
:
target
=
paddle
.
nn
.
functional
.
one_hot
(
target
,
class_dim
)
target
=
paddle
.
nn
.
functional
.
label_smooth
(
target
,
epsilon
=
ls_epsilon
)
target
=
paddle
.
reshape
(
target
,
shape
=
[
-
1
,
class_dim
])
input
=
-
paddle
.
nn
.
functional
.
log_softmax
(
input
,
axis
=-
1
)
cost
=
paddle
.
sum
(
target
*
input
,
axis
=-
1
)
else
:
cost
=
paddle
.
nn
.
functional
.
cross_entropy
(
input
=
input
,
label
=
target
)
avg_cost
=
paddle
.
mean
(
cost
)
return
avg_cost
def
train
(
epoch
,
net
):
net
.
train
()
batch_id
=
0
for
data
in
train_loader
():
image
=
data
[
0
]
label
=
data
[
1
]
start_time
=
time
.
time
()
out
=
net
(
image
)
avg_cost
=
cross_entropy
(
out
,
label
,
args
.
ls_epsilon
)
acc_top1
=
paddle
.
metric
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
1
)
acc_top5
=
paddle
.
metric
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
5
)
avg_cost
.
backward
()
opt
.
step
()
opt
.
clear_grad
()
lr
.
step
()
loss_n
=
np
.
mean
(
avg_cost
.
numpy
())
acc_top1_n
=
np
.
mean
(
acc_top1
.
numpy
())
acc_top5_n
=
np
.
mean
(
acc_top5
.
numpy
())
end_time
=
time
.
time
()
if
batch_id
%
args
.
log_period
==
0
:
_logger
.
info
(
"epoch[{}]-batch[{}] lr: {:.6f} - loss: {:.6f}; acc_top1: {:.6f}; acc_top5: {:.6f}; time: {:.3f}"
.
format
(
epoch
,
batch_id
,
lr
.
get_lr
(),
loss_n
,
acc_top1_n
,
acc_top5_n
,
end_time
-
start_time
))
batch_id
+=
1
############################################################################################################
# train loop
############################################################################################################
best_acc1
=
0.0
best_epoch
=
0
for
i
in
range
(
args
.
num_epochs
):
train
(
i
,
net
)
acc1
=
test
(
i
,
net
)
if
paddle
.
distributed
.
get_rank
()
==
0
:
model_prefix
=
os
.
path
.
join
(
args
.
model_save_dir
,
"epoch_"
+
str
(
i
))
paddle
.
save
(
net
.
state_dict
(),
model_prefix
+
".pdparams"
)
paddle
.
save
(
opt
.
state_dict
(),
model_prefix
+
".pdopt"
)
if
acc1
>
best_acc1
:
best_acc1
=
acc1
best_epoch
=
i
if
paddle
.
distributed
.
get_rank
()
==
0
:
model_prefix
=
os
.
path
.
join
(
args
.
model_save_dir
,
"best_model"
)
paddle
.
save
(
net
.
state_dict
(),
model_prefix
+
".pdparams"
)
paddle
.
save
(
opt
.
state_dict
(),
model_prefix
+
".pdopt"
)
# load best model
load_dygraph_pretrain
(
net
,
os
.
path
.
join
(
args
.
model_save_dir
,
"best_model"
))
############################################################################################################
# 3. Save quant aware model
############################################################################################################
path
=
os
.
path
.
join
(
args
.
model_save_dir
,
"inference_model"
,
'qat_model'
)
quanter
.
save_quantized_model
(
net
,
path
,
input_spec
=
[
paddle
.
static
.
InputSpec
(
shape
=
[
None
,
3
,
224
,
224
],
dtype
=
'float32'
)
])
def
main
():
args
=
parser
.
parse_args
()
print_arguments
(
args
)
compress
(
args
)
if
__name__
==
'__main__'
:
main
()
paddleslim/dygraph/quant/quanter.py
浏览文件 @
5590daf9
...
...
@@ -134,7 +134,7 @@ class PACT(paddle.nn.Layer):
alpha_attr
=
paddle
.
ParamAttr
(
name
=
self
.
full_name
()
+
".pact"
,
initializer
=
paddle
.
nn
.
initializer
.
Constant
(
value
=
20
),
learning_rate
=
10.0
)
learning_rate
=
10
00
.0
)
self
.
alpha
=
self
.
create_parameter
(
shape
=
[
1
],
attr
=
alpha_attr
,
dtype
=
'float32'
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录