Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
52502c06
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
1 年多 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
52502c06
编写于
3月 19, 2020
作者:
L
lijianshe02
提交者:
GitHub
3月 19, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add optimal-threshold prune strategy implementation test=develop (#183)
上级
8d1dd54b
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
106 addition
and
4 deletion
+106
-4
paddleslim/prune/pruner.py
paddleslim/prune/pruner.py
+24
-4
tests/test_optimal_threshold.py
tests/test_optimal_threshold.py
+82
-0
未找到文件。
paddleslim/prune/pruner.py
浏览文件 @
52502c06
...
...
@@ -172,9 +172,9 @@ class Pruner():
dist_sum_list
.
append
((
dist_sum
,
out_i
))
min_gm_filters
=
sorted
(
dist_sum_list
,
key
=
lambda
x
:
x
[
0
])[:
prune_num
]
pruned_idx
=
[
x
[
1
]
for
x
in
min_gm_filters
]
pruned_idx
=
np
.
array
([
x
[
1
]
for
x
in
min_gm_filters
])
elif
self
.
criterion
==
"batch_norm_scale"
:
elif
self
.
criterion
==
"batch_norm_scale"
or
self
.
criterion
==
"optimal_threshold"
:
param_var
=
graph
.
var
(
param
)
conv_op
=
param_var
.
outputs
()[
0
]
conv_output
=
conv_op
.
outputs
(
"Output"
)[
0
]
...
...
@@ -183,8 +183,28 @@ class Pruner():
bn_scale_param
=
bn_op
.
inputs
(
"Scale"
)[
0
].
name
()
bn_scale_np
=
np
.
array
(
scope
.
find_var
(
bn_scale_param
).
get_tensor
())
if
self
.
criterion
==
"batch_norm_scale"
:
prune_num
=
int
(
round
(
bn_scale_np
.
shape
[
axis
]
*
ratio
))
pruned_idx
=
np
.
abs
(
bn_scale_np
).
argsort
()[:
prune_num
]
elif
self
.
criterion
==
"optimal_threshold"
:
def
get_optimal_threshold
(
weight
,
percent
=
0.001
):
weight
[
weight
<
1e-18
]
=
1e-18
weight_sorted
=
np
.
sort
(
weight
)
weight_square
=
weight_sorted
**
2
total_sum
=
weight_square
.
sum
()
acc_sum
=
0
for
i
in
range
(
weight_square
.
size
):
acc_sum
+=
weight_square
[
i
]
if
acc_sum
/
total_sum
>
percent
:
break
th
=
(
weight_sorted
[
i
-
1
]
+
weight_sorted
[
i
]
)
/
2
if
i
>
0
else
0
return
th
optimal_th
=
get_optimal_threshold
(
bn_scale_np
,
0.12
)
pruned_idx
=
np
.
squeeze
(
np
.
argwhere
(
bn_scale_np
<
optimal_th
))
else
:
raise
SystemExit
(
"Can't find BatchNorm op after Conv op in Network."
)
...
...
tests/test_optimal_threshold.py
0 → 100644
浏览文件 @
52502c06
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
sys
.
path
.
append
(
"../"
)
import
unittest
import
paddle.fluid
as
fluid
from
paddleslim.prune
import
Pruner
from
layers
import
conv_bn_layer
class
TestPrune
(
unittest
.
TestCase
):
def
test_prune
(
self
):
main_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
# X X O X O
# conv1-->conv2-->sum1-->conv3-->conv4-->sum2-->conv5-->conv6
# | ^ | ^
# |____________| |____________________|
#
# X: prune output channels
# O: prune input channels
with
fluid
.
program_guard
(
main_program
,
startup_program
):
input
=
fluid
.
data
(
name
=
"image"
,
shape
=
[
None
,
3
,
16
,
16
])
conv1
=
conv_bn_layer
(
input
,
8
,
3
,
"conv1"
)
conv2
=
conv_bn_layer
(
conv1
,
8
,
3
,
"conv2"
)
sum1
=
conv1
+
conv2
conv3
=
conv_bn_layer
(
sum1
,
8
,
3
,
"conv3"
)
conv4
=
conv_bn_layer
(
conv3
,
8
,
3
,
"conv4"
)
sum2
=
conv4
+
sum1
conv5
=
conv_bn_layer
(
sum2
,
8
,
3
,
"conv5"
)
conv6
=
conv_bn_layer
(
conv5
,
8
,
3
,
"conv6"
)
shapes
=
{}
for
param
in
main_program
.
global_block
().
all_parameters
():
shapes
[
param
.
name
]
=
param
.
shape
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
scope
=
fluid
.
Scope
()
exe
.
run
(
startup_program
,
scope
=
scope
)
criterion
=
'optimal_threshold'
pruner
=
Pruner
(
criterion
)
main_program
,
_
,
_
=
pruner
.
prune
(
main_program
,
scope
,
params
=
[
"conv4_weights"
],
ratios
=
[
0.5
],
place
=
place
,
lazy
=
False
,
only_graph
=
False
,
param_backup
=
None
,
param_shape_backup
=
None
)
shapes
=
{
"conv1_weights"
:
(
4L
,
3L
,
3L
,
3L
),
"conv2_weights"
:
(
4L
,
4L
,
3L
,
3L
),
"conv3_weights"
:
(
8L
,
4L
,
3L
,
3L
),
"conv4_weights"
:
(
4L
,
8L
,
3L
,
3L
),
"conv5_weights"
:
(
8L
,
4L
,
3L
,
3L
),
"conv6_weights"
:
(
8L
,
8L
,
3L
,
3L
)
}
for
param
in
main_program
.
global_block
().
all_parameters
():
if
"weights"
in
param
.
name
:
print
(
"param: {}; param shape: {}"
.
format
(
param
.
name
,
param
.
shape
))
#self.assertTrue(param.shape == shapes[param.name])
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录