diff --git a/demo/prune/fpgm_mobilenetv1_f-50_train.sh b/demo/prune/fpgm_mobilenetv1_f-50_train.sh new file mode 100644 index 0000000000000000000000000000000000000000..0e84dafd5e9619631927aa118cef02a232016313 --- /dev/null +++ b/demo/prune/fpgm_mobilenetv1_f-50_train.sh @@ -0,0 +1,17 @@ +#!/bin/bash +export CUDA_VISIBLE_DEVICES=0,1 +export FLAGS_fraction_of_gpu_memory_to_use=0.98 +python train.py \ + --model="MobileNet" \ + --pretrained_model="/workspace/models/MobileNetV1_pretrained" \ + --data="imagenet" \ + --pruned_ratio=0.3125 \ + --lr=0.1 \ + --num_epochs=120 \ + --test_period=10 \ + --step_epochs 30 60 90\ + --l2_decay=3e-5 \ + --lr_strategy="piecewise_decay" \ + --criterion="geometry_median" \ + --model_path="./fpgm_mobilenetv1_models" \ + 2>&1 | tee fpgm_mobilenetv1_train.log diff --git a/demo/prune/fpgm_mobilenetv2_f-50_train.sh b/demo/prune/fpgm_mobilenetv2_f-50_train.sh new file mode 100644 index 0000000000000000000000000000000000000000..7d0399775f41fb3b762599ab6f2cf63337b7eab4 --- /dev/null +++ b/demo/prune/fpgm_mobilenetv2_f-50_train.sh @@ -0,0 +1,17 @@ +#!/bin/bash +export CUDA_VISIBLE_DEVICES=0,1 +export FLAGS_fraction_of_gpu_memory_to_use=0.98 +python train.py \ + --model="MobileNetV2" \ + --pretrained_model="/workspace/models/MobileNetV2_pretrained" \ + --data="imagenet" \ + --pruned_ratio=0.325 \ + --lr=0.001 \ + --num_epochs=90 \ + --test_period=5 \ + --step_epochs 30 60 80\ + --l2_decay=1e-4 \ + --lr_strategy="piecewise_decay" \ + --criterion="geometry_median" \ + --model_path="./fpgm_mobilenetv2_models" \ + 2>&1 | tee fpgm_mobilenetv2_train.log diff --git a/demo/prune/fpgm_resnet34_f-42_train.sh b/demo/prune/fpgm_resnet34_f-42_train.sh new file mode 100644 index 0000000000000000000000000000000000000000..ec24c4d8f13ab2d095e29274326c5136ed240e4d --- /dev/null +++ b/demo/prune/fpgm_resnet34_f-42_train.sh @@ -0,0 +1,12 @@ +#!/bin/bash +export CUDA_VISIBLE_DEVICES=0,1,2,3 +export FLAGS_fraction_of_gpu_memory_to_use=0.98 +python train.py \ + --model="ResNet34" \ + --pretrained_model="/workspace/models/ResNet34_pretrained" \ + --data="imagenet" \ + --pruned_ratio=0.25 \ + --lr_strategy="cosine_decay" \ + --criterion="geometry_median" \ + --model_path="./fpgm_resnet34_025_120_models" \ + 2>&1 | tee fpgm_resnet025_120_train.log diff --git a/demo/prune/fpgm_resnet34_f-50_train.sh b/demo/prune/fpgm_resnet34_f-50_train.sh new file mode 100644 index 0000000000000000000000000000000000000000..c181dfb66a1b0fb588cba3868b970f656a73f0d6 --- /dev/null +++ b/demo/prune/fpgm_resnet34_f-50_train.sh @@ -0,0 +1,17 @@ +#!/bin/bash +export CUDA_VISIBLE_DEVICES=0,1 +export FLAGS_fraction_of_gpu_memory_to_use=0.98 +python train.py \ + --model="ResNet34" \ + --pretrained_model="/workspace/models/ResNet34_pretrained" \ + --data="imagenet" \ + --pruned_ratio=0.3125 \ + --lr=0.001 \ + --num_epochs=70 \ + --test_period=5 \ + --step_epochs 30 60 \ + --l2_decay=1e-4 \ + --lr_strategy="piecewise_decay" \ + --criterion="geometry_median" \ + --model_path="./fpgm_resnet34_models" \ + 2>&1 | tee fpgm_resnet03_train.log