From 4cd2e666fcbe3eece4178b74f0b1c320fb2fd819 Mon Sep 17 00:00:00 2001 From: ceci3 Date: Thu, 25 Feb 2021 16:17:47 +0800 Subject: [PATCH] fix bert docs (#666) (#675) * fix docs * update --- demo/ofa/bert/README.md | 9 +++++---- demo/ofa/ernie/README.md | 4 +++- demo/ofa/ernie/ernie_supernet/importance.py | 3 ++- paddleslim/nas/ofa/get_sub_model.py | 7 ++++--- 4 files changed, 14 insertions(+), 9 deletions(-) diff --git a/demo/ofa/bert/README.md b/demo/ofa/bert/README.md index 83054a4c..b4f39186 100644 --- a/demo/ofa/bert/README.md +++ b/demo/ofa/bert/README.md @@ -1,6 +1,7 @@ # OFA压缩PaddleNLP-BERT模型 -BERT-base模型是一个迁移能力很强的通用语义表示模型,但是模型中也有一些参数冗余。本教程将介绍如何使用PaddleSlim对[PaddleNLP](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/)中BERT-base模型进行压缩。 +BERT-base模型是一个迁移能力很强的通用语义表示模型,但是模型中也有一些参数冗余。本教程将介绍如何使用PaddleSlim对[PaddleNLP](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/)中BERT-base模型进行压缩。 +本教程只会演示如何快速启动相应训练,详细教程请参考: [BERT](https://github.com/PaddlePaddle/PaddleSlim/blob/release/2.0.0/docs/zh_cn/nlp/paddlenlp_slim_ofa_tutorial.md) ## 1. 压缩结果 @@ -82,7 +83,7 @@ BERT-base模型是一个迁移能力很强的通用语义表示模型,但是 V100 16 - BERT + BERT N @@ -106,7 +107,7 @@ BERT-base模型是一个迁移能力很强的通用语义表示模型,但是 Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz 16 - BERT + BERT N @@ -184,7 +185,7 @@ python -u ./run_glue_ofa.py --model_type bert \ 压缩训练之后在dev上的结果如表1-1中『Result with PaddleSlim』列所示,延时情况如表1-2所示。 ## 3. OFA接口介绍 -OFA API介绍参考[API](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/api_cn/ofa_api.rst) +OFA API介绍参考[API](https://github.com/PaddlePaddle/PaddleSlim/blob/release/2.0.0/docs/zh_cn/api_cn/dygraph/ofa/ofa_api.rst) # 基于本代码对TinyBERT(L=4, D=312)进行压缩 下游任务模型是从TinyBERT官方repo转换得到。 diff --git a/demo/ofa/ernie/README.md b/demo/ofa/ernie/README.md index 6143bfc6..32212b30 100644 --- a/demo/ofa/ernie/README.md +++ b/demo/ofa/ernie/README.md @@ -2,6 +2,8 @@ ERNIE是百度开创性提出的基于知识增强的持续学习语义理解框架,该框架将大数据预训练与多源丰富知识相结合,通过持续学习技术,不断吸收海量文本数据中词汇、结构、语义等方面的知识,实现模型效果不断进化。本教程讲介绍如何使用PaddleSlim对[ERNIE](https://github.com/PaddlePaddle/ERNIE)模型进行压缩。 +本教程只会演示如何快速启动相应训练,详细教程请参考:[ERNIE](https://github.com/PaddlePaddle/PaddleSlim/blob/release/2.0.0/docs/zh_cn/nlp/ernie_slim_ofa_tutorial.md) + 使用本教程压缩算法可以在精度无损的情况下,对原始Tiny-ERNIE模型进行40%的加速。 ## 1. 快速开始 @@ -41,4 +43,4 @@ python ./ofa_ernie.py \ - `depth_mult_list` 表示压缩训练过程中,模型包含的Transformer Block数量的选择的范围。 ## 2. OFA接口介绍 -TODO +OFA API介绍参考[API](https://github.com/PaddlePaddle/PaddleSlim/blob/release/2.0.0/docs/zh_cn/api_cn/dygraph/ofa/ofa_api.rst) diff --git a/demo/ofa/ernie/ernie_supernet/importance.py b/demo/ofa/ernie/ernie_supernet/importance.py index c27f89dd..061f41b8 100644 --- a/demo/ofa/ernie/ernie_supernet/importance.py +++ b/demo/ofa/ernie/ernie_supernet/importance.py @@ -52,12 +52,13 @@ def compute_neuron_head_importance(args, model, dev_ds, place, model_cfg): for eval_task in eval_task_names: for batch in dev_ds.start(place): ids, sids, label = batch - loss, _, _ = model( + out = model( ids, sids, labels=label, head_mask=head_mask, num_layers=model_cfg['num_hidden_layers']) + loss = out[0] loss.backward() head_importance += L.abs(FD.to_variable(head_mask.gradient())) diff --git a/paddleslim/nas/ofa/get_sub_model.py b/paddleslim/nas/ofa/get_sub_model.py index 1b93e694..a7c4a6c8 100644 --- a/paddleslim/nas/ofa/get_sub_model.py +++ b/paddleslim/nas/ofa/get_sub_model.py @@ -14,6 +14,7 @@ import numpy as np import paddle +from paddle.fluid import core __all__ = ['get_prune_params_config', 'prune_params'] @@ -96,11 +97,11 @@ def prune_params(model, param_config, super_model_sd=None): p = t_value._place() if p.is_cpu_place(): - place = paddle.CPUPlace() + place = core.CPUPlace() elif p.is_cuda_pinned_place(): - place = paddle.CUDAPinnedPlace() + place = core.CUDAPinnedPlace() else: - place = paddle.CUDAPlace(p.gpu_device_id()) + place = core.CUDAPlace(p.gpu_device_id()) t_value.set(prune_value, place) if param.trainable: param.clear_gradient() -- GitLab