diff --git a/docs/docs/model_zoo.md b/docs/docs/model_zoo.md index 6b100bedfd0eb4caa89411f1f17265e0bd6d78c3..bcd31a53be726122d35e9b2f0713a637455a7307 100644 --- a/docs/docs/model_zoo.md +++ b/docs/docs/model_zoo.md @@ -40,19 +40,19 @@ | 模型 | 压缩方法 | Top-1/Top-5 Acc | 模型大小(MB) | 下载 | |:--:|:---:|:--:|:--:|:--:| -|MobileNetV1|-|70.99%/89.68%| xx | [下载链接]() | -|MobileNetV1|ResNet50_vd[1](#trans1) distill|xx%/xx%| xx | [下载链接]() | -| MobileNetV2 | - |72.15%/90.65%| xx | [下载链接]() | -| MobileNetV2 | ResNet50_vd[1](#trans1) distill |xx%/xx%| xx | [下载链接]() | -|ResNet50|-|76.50%/93.00%| xx | [下载链接]() | -|ResNet50|ResNet101[2](#trans2) distill|xx%/xx%| xx | [下载链接]() | +| MobileNetV1 | - | 70.99%/89.68% | 17 | [下载链接]() | +|ResNet50_vd|-|79.12%/94.44%| 99 | [下载链接]() | +|MobileNetV1|ResNet50_vd[1](#trans1) distill|72.77%/90.68%| 17 | [下载链接]() | +| MobileNetV2 | - | 72.15%/90.65% | 15 | [下载链接]() | +| MobileNetV2 | ResNet50_vd distill | 74.28%/91.53% | 15 | [下载链接]() | +| ResNet50 | - | 76.50%/93.00% | 99 | [下载链接]() | +|ResNet101|-|77.56%/93.64%| 173 | [下载链接]() | +| ResNet50 | ResNet101 distill | 77.29%/93.65% | 99 | [下载链接]() | !!! note "Note" - [1]:[ResNet50_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar)预训练模型Top-1/Top-5准确率分别为79.12%/94.44% - 带_vd后缀代表开启了Mixup训练,Mixup相关介绍参考[mixup: Beyond Empirical Risk Minimization](https://arxiv.org/abs/1710.09412) - - [2]:[ResNet101](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar)预训练模型Top-1/Top-5准确率分别为77.56%/93.64% + [1]:带_vd后缀代表该预训练模型使用了Mixup,Mixup相关介绍参考[mixup: Beyond Empirical Risk Minimization](https://arxiv.org/abs/1710.09412) + ## 2. 目标检测 @@ -111,18 +111,15 @@ 数据集:Pasacl VOC & COCO 2017 -| 模型 | 压缩方法 | 数据集 | Image/GPU | 输入608 Box AP | 输入416 Box AP | 输入320 Box AP | 模型大小(MB) | 下载 | -| :-----------------: | :--------------------------------------------: | :--------: | :-------: | :------------: | :------------: | :------------: | :------------: | :----------: | -| MobileNet-V1-YOLOv3 | - | Pasacl VOC | 8 | 76.2 | 76.7 | 75.3 | xx | [下载链接]() | -| MobileNet-V1-YOLOv3 | ResNet34-YOLOv3[3](#trans3) distill | Pasacl VOC | 8 | xx | xx | xx | xx | [下载链接]() | -| MobileNet-V1-YOLOv3 | - | COCO | 8 | 29.3 | 29.3 | 27.1 | xx | [下载链接]() | -| MobileNet-V1-YOLOv3 | ResNet34-YOLOv3[4](#trans4) distill | COCO | 8 | xx | xx | xx | xx | [下载链接]() | - -!!! note "Note" - [3]:[ResNet34-YOLOv3-VOC]()预训练模型在608/416/320尺寸输入下的Box AP分别为82.6/81.9/80.1 - +| 模型 | 压缩方法 | 数据集 | Image/GPU | 输入608 Box AP | 输入416 Box AP | 输入320 Box AP | 模型大小(MB) | 下载 | +| :-----------------: | :---------------------: | :--------: | :-------: | :------------: | :------------: | :------------: | :------------: | :----------: | +| MobileNet-V1-YOLOv3 | - | Pascal VOC | 8 | 76.2 | 76.7 | 75.3 | 94 | [下载链接]() | +| ResNet34-YOLOv3 | - | Pascal VOC | 8 | 82.6 | 81.9 | 80.1 | 162 | [下载链接]() | +| MobileNet-V1-YOLOv3 | ResNet34-YOLOv3 distill | Pascal VOC | 8 | 79.0 | 78.2 | 75.5 | 94 | [下载链接]() | +| MobileNet-V1-YOLOv3 | - | COCO | 8 | 29.3 | 29.3 | 27.0 | 95 | [下载链接]() | +| ResNet34-YOLOv3 | - | COCO | 8 | 36.2 | 34.3 | 31.4 | 163 | [下载链接]() | +| MobileNet-V1-YOLOv3 | ResNet34-YOLOv3 distill | COCO | 8 | 31.4 | 30.0 | 27.1 | 95 | [下载链接]() | - [4]:[ResNet34-YOLOv3-COCO]()预训练模型在608/416/320尺寸输入下的Box AP分别为36.2/34.3/31.4 ## 3. 图像分割