Sensitivity Pruner: <ahref="https://arxiv.org/abs/1608.08710"target="_blank"><spanstyle="font-family:"font-size:14px;background-color:#FFFFFF;"><spanstyle="font-family:"font-size:14px;background-color:#FFFFFF;">Li H , Kadav A , Durdanovic I , et al. Pruning Filters for Efficient ConvNets[J]. 2016.</span></span></a>
</li>
<li>
AMC Pruner: <ahref="https://arxiv.org/abs/1802.03494"target="_blank"><spanstyle="font-family:"font-size:13px;background-color:#FFFFFF;">He, Yihui , et al. "AMC: AutoML for Model Compression and Acceleration on Mobile Devices." (2018).</span></a>
</li>
<li>
FPGM Pruner: <ahref="https://arxiv.org/abs/1811.00250"target="_blank"><spanstyle="font-family:"font-size:14px;background-color:#FFFFFF;">He Y , Liu P , Wang Z , et al. Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration[C]// IEEE/CVF Conference on Computer Vision & Pattern Recognition. IEEE, 2019.</span></a>
</li>
<li>
Slim Pruner:<spanstyle="background-color:#FFFDFA;"> <ahref="https://arxiv.org/pdf/1708.06519.pdf"target="_blank"><spanstyle="font-family:"font-size:14px;background-color:#FFFFFF;">Liu Z , Li J , Shen Z , et al. Learning Efficient Convolutional Networks through Network Slimming[J]. 2017.</span></a></span>
</li>
<li>
<spanstyle="background-color:#FFFDFA;">Opt Slim Pruner: <ahref="https://arxiv.org/pdf/2003.04566.pdf"target="_blank"><spanstyle="font-family:"font-size:14px;background-color:#FFFFFF;">Ye Y , You G , Fwu J K , et al. Channel Pruning via Optimal Thresholding[J]. 2020.</span></a><br/>
Quantization Aware Training: <ahref="https://arxiv.org/abs/1806.08342"target="_blank"><spanstyle="font-family:"font-size:14px;background-color:#FFFFFF;">Krishnamoorthi R . Quantizing deep convolutional networks for efficient inference: A whitepaper[J]. 2018.</span></a>
</li>
<li>
Post Training <span>Quantization </span><ahref="http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf"target="_blank">原理</a>
</li>
<li>
Embedding <span>Quantization: <ahref="https://arxiv.org/pdf/1603.01025.pdf"target="_blank"><spanstyle="font-family:"font-size:14px;background-color:#FFFFFF;">Miyashita D , Lee E H , Murmann B . Convolutional Neural Networks using Logarithmic Data Representation[J]. 2016.</span></a></span>
</li>
<li>
DSQ: <ahref="https://arxiv.org/abs/1908.05033"target="_blank"><spanstyle="color:#222222;font-family:Arial, sans-serif;font-size:13px;background-color:#FFFFFF;">Gong, Ruihao, et al. "Differentiable soft quantization: Bridging full-precision and low-bit neural networks." </span><i>Proceedings of the IEEE International Conference on Computer Vision</i><spanstyle="color:#222222;font-family:Arial, sans-serif;font-size:13px;background-color:#FFFFFF;">. 2019.</span></a>
</li>
<li>
PACT: <ahref="https://arxiv.org/abs/1805.06085"target="_blank"><spanstyle="color:#222222;font-family:Arial, sans-serif;font-size:13px;background-color:#FFFFFF;">Choi, Jungwook, et al. "Pact: Parameterized clipping activation for quantized neural networks." </span><i>arXiv preprint arXiv:1805.06085</i><spanstyle="color:#222222;font-family:Arial, sans-serif;font-size:13px;background-color:#FFFFFF;"> (2018).</span></a>
<span>Knowledge Distillation</span>: <ahref="https://arxiv.org/abs/1503.02531"target="_blank"><spanstyle="color:#222222;font-family:Arial, sans-serif;font-size:13px;background-color:#FFFFFF;">Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the knowledge in a neural network." </span><i>arXiv preprint arXiv:1503.02531</i><spanstyle="color:#222222;font-family:Arial, sans-serif;font-size:13px;background-color:#FFFFFF;"> (2015).</span></a>
</li>
<li>
FSP <span>Knowledge Distillation</span>: <ahref="http://openaccess.thecvf.com/content_cvpr_2017/papers/Yim_A_Gift_From_CVPR_2017_paper.pdf"target="_blank"><spanstyle="color:#222222;font-family:Arial, sans-serif;font-size:13px;background-color:#FFFFFF;">Yim, Junho, et al. "A gift from knowledge distillation: Fast optimization, network minimization and transfer learning." </span><i>Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition</i><spanstyle="color:#222222;font-family:Arial, sans-serif;font-size:13px;background-color:#FFFFFF;">. 2017.</span></a>
</li>
<li>
YOLO Knowledge Distillation: <ahref="http://openaccess.thecvf.com/content_ECCVW_2018/papers/11133/Mehta_Object_detection_at_200_Frames_Per_Second_ECCVW_2018_paper.pdf"target="_blank"><spanstyle="color:#222222;font-family:Arial, sans-serif;font-size:13px;background-color:#FFFFFF;">Mehta, Rakesh, and Cemalettin Ozturk. "Object detection at 200 frames per second." </span><i>Proceedings of the European Conference on Computer Vision (ECCV)</i><spanstyle="color:#222222;font-family:Arial, sans-serif;font-size:13px;background-color:#FFFFFF;">. 2018.</span></a>
</li>
<li>
DML: <ahref="https://arxiv.org/abs/1706.00384"target="_blank"><spanstyle="color:#222222;font-family:Arial, sans-serif;font-size:13px;background-color:#FFFFFF;">Zhang, Ying, et al. "Deep mutual learning." </span><i>Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition</i><spanstyle="color:#222222;font-family:Arial, sans-serif;font-size:13px;background-color:#FFFFFF;">. 2018.</span></a>