未验证 提交 432639d7 编写于 作者: W whs 提交者: GitHub

Rename paddle.batch to paddle.io.batch (#290)

上级 567e90e4
...@@ -116,8 +116,8 @@ def compress(args): ...@@ -116,8 +116,8 @@ def compress(args):
fluid.io.load_vars(exe, args.pretrained_model, predicate=if_exist) fluid.io.load_vars(exe, args.pretrained_model, predicate=if_exist)
val_reader = paddle.batch(val_reader, batch_size=args.batch_size) val_reader = paddle.fluid.io.batch(val_reader, batch_size=args.batch_size)
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
train_reader, batch_size=args.batch_size, drop_last=True) train_reader, batch_size=args.batch_size, drop_last=True)
train_feeder = feeder = fluid.DataFeeder([image, label], place) train_feeder = feeder = fluid.DataFeeder([image, label], place)
......
...@@ -34,12 +34,12 @@ add_arg('config_file', str, None, "The config file for comp ...@@ -34,12 +34,12 @@ add_arg('config_file', str, None, "The config file for comp
model_list = [m for m in dir(models) if "__" not in m] model_list = [m for m in dir(models) if "__" not in m]
ratiolist = [ ratiolist = [
# [0.06, 0.0, 0.09, 0.03, 0.09, 0.02, 0.05, 0.03, 0.0, 0.07, 0.07, 0.05, 0.08], # [0.06, 0.0, 0.09, 0.03, 0.09, 0.02, 0.05, 0.03, 0.0, 0.07, 0.07, 0.05, 0.08],
# [0.08, 0.02, 0.03, 0.13, 0.1, 0.06, 0.03, 0.04, 0.14, 0.02, 0.03, 0.02, 0.01], # [0.08, 0.02, 0.03, 0.13, 0.1, 0.06, 0.03, 0.04, 0.14, 0.02, 0.03, 0.02, 0.01],
] ]
def save_model(args, exe, train_prog, eval_prog,info): def save_model(args, exe, train_prog, eval_prog, info):
model_path = os.path.join(args.model_save_dir, args.model, str(info)) model_path = os.path.join(args.model_save_dir, args.model, str(info))
if not os.path.isdir(model_path): if not os.path.isdir(model_path):
os.makedirs(model_path) os.makedirs(model_path)
...@@ -58,29 +58,31 @@ def piecewise_decay(args): ...@@ -58,29 +58,31 @@ def piecewise_decay(args):
regularization=fluid.regularizer.L2Decay(args.l2_decay)) regularization=fluid.regularizer.L2Decay(args.l2_decay))
return optimizer return optimizer
def cosine_decay(args): def cosine_decay(args):
step = int(math.ceil(float(args.total_images) / args.batch_size)) step = int(math.ceil(float(args.total_images) / args.batch_size))
learning_rate = fluid.layers.cosine_decay( learning_rate = fluid.layers.cosine_decay(
learning_rate=args.lr, learning_rate=args.lr, step_each_epoch=step, epochs=args.num_epochs)
step_each_epoch=step,
epochs=args.num_epochs)
optimizer = fluid.optimizer.Momentum( optimizer = fluid.optimizer.Momentum(
learning_rate=learning_rate, learning_rate=learning_rate,
momentum=args.momentum_rate, momentum=args.momentum_rate,
regularization=fluid.regularizer.L2Decay(args.l2_decay)) regularization=fluid.regularizer.L2Decay(args.l2_decay))
return optimizer return optimizer
def create_optimizer(args): def create_optimizer(args):
if args.lr_strategy == "piecewise_decay": if args.lr_strategy == "piecewise_decay":
return piecewise_decay(args) return piecewise_decay(args)
elif args.lr_strategy == "cosine_decay": elif args.lr_strategy == "cosine_decay":
return cosine_decay(args) return cosine_decay(args)
def compress(args): def compress(args):
class_dim=1000 class_dim = 1000
image_shape="3,224,224" image_shape = "3,224,224"
image_shape = [int(m) for m in image_shape.split(",")] image_shape = [int(m) for m in image_shape.split(",")]
assert args.model in model_list, "{} is not in lists: {}".format(args.model, model_list) assert args.model in model_list, "{} is not in lists: {}".format(
args.model, model_list)
image = fluid.layers.data(name='image', shape=image_shape, dtype='float32') image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64') label = fluid.layers.data(name='label', shape=[1], dtype='int64')
# model definition # model definition
...@@ -98,18 +100,22 @@ def compress(args): ...@@ -98,18 +100,22 @@ def compress(args):
exe.run(fluid.default_startup_program()) exe.run(fluid.default_startup_program())
if args.pretrained_model: if args.pretrained_model:
def if_exist(var): def if_exist(var):
exist = os.path.exists(os.path.join(args.pretrained_model, var.name)) exist = os.path.exists(
print("exist",exist) os.path.join(args.pretrained_model, var.name))
print("exist", exist)
return exist return exist
#fluid.io.load_vars(exe, args.pretrained_model, predicate=if_exist) #fluid.io.load_vars(exe, args.pretrained_model, predicate=if_exist)
val_reader = paddle.batch(reader.val(), batch_size=args.batch_size) val_reader = paddle.fluid.io.batch(reader.val(), batch_size=args.batch_size)
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
reader.train(), batch_size=args.batch_size, drop_last=True) reader.train(), batch_size=args.batch_size, drop_last=True)
train_feeder = feeder = fluid.DataFeeder([image, label], place) train_feeder = feeder = fluid.DataFeeder([image, label], place)
val_feeder = feeder = fluid.DataFeeder([image, label], place, program=val_program) val_feeder = feeder = fluid.DataFeeder(
[image, label], place, program=val_program)
def test(epoch, program): def test(epoch, program):
batch_id = 0 batch_id = 0
...@@ -117,17 +123,23 @@ def compress(args): ...@@ -117,17 +123,23 @@ def compress(args):
acc_top5_ns = [] acc_top5_ns = []
for data in val_reader(): for data in val_reader():
start_time = time.time() start_time = time.time()
acc_top1_n, acc_top5_n = exe.run(program, acc_top1_n, acc_top5_n = exe.run(
program,
feed=train_feeder.feed(data), feed=train_feeder.feed(data),
fetch_list=[acc_top1.name, acc_top5.name]) fetch_list=[acc_top1.name, acc_top5.name])
end_time = time.time() end_time = time.time()
print("Eval epoch[{}] batch[{}] - acc_top1: {}; acc_top5: {}; time: {}".format(epoch, batch_id, np.mean(acc_top1_n), np.mean(acc_top5_n), end_time-start_time)) print(
"Eval epoch[{}] batch[{}] - acc_top1: {}; acc_top5: {}; time: {}".
format(epoch, batch_id,
np.mean(acc_top1_n),
np.mean(acc_top5_n), end_time - start_time))
acc_top1_ns.append(np.mean(acc_top1_n)) acc_top1_ns.append(np.mean(acc_top1_n))
acc_top5_ns.append(np.mean(acc_top5_n)) acc_top5_ns.append(np.mean(acc_top5_n))
batch_id += 1 batch_id += 1
print("Final eval epoch[{}] - acc_top1: {}; acc_top5: {}".format(epoch, np.mean(np.array(acc_top1_ns)), np.mean(np.array(acc_top5_ns)))) print("Final eval epoch[{}] - acc_top1: {}; acc_top5: {}".format(
epoch,
np.mean(np.array(acc_top1_ns)), np.mean(np.array(acc_top5_ns))))
def train(epoch, program): def train(epoch, program):
...@@ -142,15 +154,22 @@ def compress(args): ...@@ -142,15 +154,22 @@ def compress(args):
batch_id = 0 batch_id = 0
for data in train_reader(): for data in train_reader():
start_time = time.time() start_time = time.time()
loss_n, acc_top1_n, acc_top5_n,lr_n = exe.run(train_program, loss_n, acc_top1_n, acc_top5_n, lr_n = exe.run(
train_program,
feed=train_feeder.feed(data), feed=train_feeder.feed(data),
fetch_list=[avg_cost.name, acc_top1.name, acc_top5.name,"learning_rate"]) fetch_list=[
avg_cost.name, acc_top1.name, acc_top5.name,
"learning_rate"
])
end_time = time.time() end_time = time.time()
loss_n = np.mean(loss_n) loss_n = np.mean(loss_n)
acc_top1_n = np.mean(acc_top1_n) acc_top1_n = np.mean(acc_top1_n)
acc_top5_n = np.mean(acc_top5_n) acc_top5_n = np.mean(acc_top5_n)
lr_n = np.mean(lr_n) lr_n = np.mean(lr_n)
print("epoch[{}]-batch[{}] - loss: {}; acc_top1: {}; acc_top5: {};lrn: {}; time: {}".format(epoch, batch_id, loss_n, acc_top1_n, acc_top5_n, lr_n,end_time-start_time)) print(
"epoch[{}]-batch[{}] - loss: {}; acc_top1: {}; acc_top5: {};lrn: {}; time: {}".
format(epoch, batch_id, loss_n, acc_top1_n, acc_top5_n, lr_n,
end_time - start_time))
batch_id += 1 batch_id += 1
params = [] params = []
...@@ -158,39 +177,45 @@ def compress(args): ...@@ -158,39 +177,45 @@ def compress(args):
#if "_weights" in param.name and "conv1_weights" not in param.name: #if "_weights" in param.name and "conv1_weights" not in param.name:
if "_sep_weights" in param.name: if "_sep_weights" in param.name:
params.append(param.name) params.append(param.name)
print("fops before pruning: {}".format(flops(fluid.default_main_program()))) print("fops before pruning: {}".format(
flops(fluid.default_main_program())))
pruned_program_iter = fluid.default_main_program() pruned_program_iter = fluid.default_main_program()
pruned_val_program_iter = val_program pruned_val_program_iter = val_program
for ratios in ratiolist: for ratios in ratiolist:
pruner = Pruner() pruner = Pruner()
pruned_val_program_iter = pruner.prune(pruned_val_program_iter, pruned_val_program_iter = pruner.prune(
pruned_val_program_iter,
fluid.global_scope(), fluid.global_scope(),
params=params, params=params,
ratios=ratios, ratios=ratios,
place=place, place=place,
only_graph=True) only_graph=True)
pruned_program_iter = pruner.prune(
pruned_program_iter = pruner.prune(pruned_program_iter, pruned_program_iter,
fluid.global_scope(), fluid.global_scope(),
params=params, params=params,
ratios=ratios, ratios=ratios,
place=place) place=place)
print("fops after pruning: {}".format(flops(pruned_program_iter))) print("fops after pruning: {}".format(flops(pruned_program_iter)))
""" do not inherit learning rate """ """ do not inherit learning rate """
if(os.path.exists(args.pretrained_model + "/learning_rate")): if (os.path.exists(args.pretrained_model + "/learning_rate")):
os.remove( args.pretrained_model + "/learning_rate") os.remove(args.pretrained_model + "/learning_rate")
if(os.path.exists(args.pretrained_model + "/@LR_DECAY_COUNTER@")): if (os.path.exists(args.pretrained_model + "/@LR_DECAY_COUNTER@")):
os.remove( args.pretrained_model + "/@LR_DECAY_COUNTER@") os.remove(args.pretrained_model + "/@LR_DECAY_COUNTER@")
fluid.io.load_vars(exe, args.pretrained_model , main_program = pruned_program_iter, predicate=if_exist) fluid.io.load_vars(
exe,
args.pretrained_model,
main_program=pruned_program_iter,
predicate=if_exist)
pruned_program = pruned_program_iter pruned_program = pruned_program_iter
pruned_val_program = pruned_val_program_iter pruned_val_program = pruned_val_program_iter
for i in range(args.num_epochs): for i in range(args.num_epochs):
train(i, pruned_program) train(i, pruned_program)
test(i, pruned_val_program) test(i, pruned_val_program)
save_model(args,exe,pruned_program,pruned_val_program,i) save_model(args, exe, pruned_program, pruned_val_program, i)
def main(): def main():
args = parser.parse_args() args = parser.parse_args()
......
...@@ -41,9 +41,10 @@ add_arg('test_period', int, 10, "Test period in epoches.") ...@@ -41,9 +41,10 @@ add_arg('test_period', int, 10, "Test period in epoches.")
model_list = [m for m in dir(models) if "__" not in m] model_list = [m for m in dir(models) if "__" not in m]
ratiolist = [ ratiolist = [
# [0.06, 0.0, 0.09, 0.03, 0.09, 0.02, 0.05, 0.03, 0.0, 0.07, 0.07, 0.05, 0.08], # [0.06, 0.0, 0.09, 0.03, 0.09, 0.02, 0.05, 0.03, 0.0, 0.07, 0.07, 0.05, 0.08],
# [0.08, 0.02, 0.03, 0.13, 0.1, 0.06, 0.03, 0.04, 0.14, 0.02, 0.03, 0.02, 0.01], # [0.08, 0.02, 0.03, 0.13, 0.1, 0.06, 0.03, 0.04, 0.14, 0.02, 0.03, 0.02, 0.01],
] ]
def piecewise_decay(args): def piecewise_decay(args):
step = int(math.ceil(float(args.total_images) / args.batch_size)) step = int(math.ceil(float(args.total_images) / args.batch_size))
...@@ -121,8 +122,8 @@ def compress(args): ...@@ -121,8 +122,8 @@ def compress(args):
# fluid.io.load_vars(exe, args.pretrained_model, predicate=if_exist) # fluid.io.load_vars(exe, args.pretrained_model, predicate=if_exist)
val_reader = paddle.batch(val_reader, batch_size=args.batch_size) val_reader = paddle.fluid.io.batch(val_reader, batch_size=args.batch_size)
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
train_reader, batch_size=args.batch_size, drop_last=True) train_reader, batch_size=args.batch_size, drop_last=True)
train_feeder = feeder = fluid.DataFeeder([image, label], place) train_feeder = feeder = fluid.DataFeeder([image, label], place)
...@@ -194,21 +195,26 @@ def compress(args): ...@@ -194,21 +195,26 @@ def compress(args):
for ratios in ratiolist: for ratios in ratiolist:
pruner = Pruner() pruner = Pruner()
pruned_val_program_iter = pruner.prune(pruned_val_program_iter, pruned_val_program_iter = pruner.prune(
pruned_val_program_iter,
fluid.global_scope(), fluid.global_scope(),
params=params, params=params,
ratios=ratios, ratios=ratios,
place=place, place=place,
only_graph=True) only_graph=True)
pruned_program_iter = pruner.prune(
pruned_program_iter = pruner.prune(pruned_program_iter, pruned_program_iter,
fluid.global_scope(), fluid.global_scope(),
params=params, params=params,
ratios=ratios, ratios=ratios,
place=place) place=place)
print("fops after pruning: {}".format(flops(pruned_program_iter))) print("fops after pruning: {}".format(flops(pruned_program_iter)))
fluid.io.load_vars(exe, args.pretrained_model , main_program = pruned_program_iter, predicate=if_exist) fluid.io.load_vars(
exe,
args.pretrained_model,
main_program=pruned_program_iter,
predicate=if_exist)
pruner = AutoPruner( pruner = AutoPruner(
pruned_val_program_iter, pruned_val_program_iter,
...@@ -238,8 +244,6 @@ def compress(args): ...@@ -238,8 +244,6 @@ def compress(args):
pruner.reward(score) pruner.reward(score)
def main(): def main():
args = parser.parse_args() args = parser.parse_args()
print_arguments(args) print_arguments(args)
......
...@@ -133,9 +133,9 @@ def compress(args): ...@@ -133,9 +133,9 @@ def compress(args):
place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace() place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place) exe = fluid.Executor(place)
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
train_reader, batch_size=args.batch_size, drop_last=True) train_reader, batch_size=args.batch_size, drop_last=True)
val_reader = paddle.batch( val_reader = paddle.fluid.io.batch(
val_reader, batch_size=args.batch_size, drop_last=True) val_reader, batch_size=args.batch_size, drop_last=True)
val_program = student_program.clone(for_test=True) val_program = student_program.clone(for_test=True)
......
...@@ -165,7 +165,7 @@ ...@@ -165,7 +165,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"train_reader = paddle.batch(\n", "train_reader = paddle.fluid.io.batch(\n",
" paddle.dataset.mnist.train(), batch_size=128, drop_last=True)\n", " paddle.dataset.mnist.train(), batch_size=128, drop_last=True)\n",
"train_feeder = fluid.DataFeeder(['image', 'label'], fluid.CPUPlace(), student_program)" "train_feeder = fluid.DataFeeder(['image', 'label'], fluid.CPUPlace(), student_program)"
] ]
......
...@@ -137,22 +137,22 @@ def search_mobilenetv2_block(config, args, image_size): ...@@ -137,22 +137,22 @@ def search_mobilenetv2_block(config, args, image_size):
exe.run(startup_program) exe.run(startup_program)
if args.data == 'cifar10': if args.data == 'cifar10':
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
paddle.reader.shuffle( paddle.reader.shuffle(
paddle.dataset.cifar.train10(cycle=False), buf_size=1024), paddle.dataset.cifar.train10(cycle=False), buf_size=1024),
batch_size=args.batch_size, batch_size=args.batch_size,
drop_last=True) drop_last=True)
test_reader = paddle.batch( test_reader = paddle.fluid.io.batch(
paddle.dataset.cifar.test10(cycle=False), paddle.dataset.cifar.test10(cycle=False),
batch_size=args.batch_size, batch_size=args.batch_size,
drop_last=False) drop_last=False)
elif args.data == 'imagenet': elif args.data == 'imagenet':
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
imagenet_reader.train(), imagenet_reader.train(),
batch_size=args.batch_size, batch_size=args.batch_size,
drop_last=True) drop_last=True)
test_reader = paddle.batch( test_reader = paddle.fluid.io.batch(
imagenet_reader.val(), imagenet_reader.val(),
batch_size=args.batch_size, batch_size=args.batch_size,
drop_last=False) drop_last=False)
......
...@@ -114,9 +114,9 @@ ...@@ -114,9 +114,9 @@
" if current_flops > 321208544:\n", " if current_flops > 321208544:\n",
" continue\n", " continue\n",
" \n", " \n",
" train_reader = paddle.batch(paddle.reader.shuffle(paddle.dataset.cifar.train10(cycle=False), buf_size=1024),batch_size=256)\n", " train_reader = paddle.fluid.io.batch(paddle.reader.shuffle(paddle.dataset.cifar.train10(cycle=False), buf_size=1024),batch_size=256)\n",
" train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())\n", " train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())\n",
" test_reader = paddle.batch(paddle.dataset.cifar.test10(cycle=False),\n", " test_reader = paddle.fluid.io.batch(paddle.dataset.cifar.test10(cycle=False),\n",
" batch_size=256)\n", " batch_size=256)\n",
" test_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())\n", " test_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())\n",
"\n", "\n",
......
...@@ -105,22 +105,22 @@ def search_mobilenetv2(config, args, image_size, is_server=True): ...@@ -105,22 +105,22 @@ def search_mobilenetv2(config, args, image_size, is_server=True):
exe.run(startup_program) exe.run(startup_program)
if args.data == 'cifar10': if args.data == 'cifar10':
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
paddle.reader.shuffle( paddle.reader.shuffle(
paddle.dataset.cifar.train10(cycle=False), buf_size=1024), paddle.dataset.cifar.train10(cycle=False), buf_size=1024),
batch_size=args.batch_size, batch_size=args.batch_size,
drop_last=True) drop_last=True)
test_reader = paddle.batch( test_reader = paddle.fluid.io.batch(
paddle.dataset.cifar.test10(cycle=False), paddle.dataset.cifar.test10(cycle=False),
batch_size=args.batch_size, batch_size=args.batch_size,
drop_last=False) drop_last=False)
elif args.data == 'imagenet': elif args.data == 'imagenet':
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
imagenet_reader.train(), imagenet_reader.train(),
batch_size=args.batch_size, batch_size=args.batch_size,
drop_last=True) drop_last=True)
test_reader = paddle.batch( test_reader = paddle.fluid.io.batch(
imagenet_reader.val(), imagenet_reader.val(),
batch_size=args.batch_size, batch_size=args.batch_size,
drop_last=False) drop_last=False)
......
...@@ -109,22 +109,22 @@ def search_mobilenetv2(config, args, image_size, is_server=True): ...@@ -109,22 +109,22 @@ def search_mobilenetv2(config, args, image_size, is_server=True):
exe.run(startup_program) exe.run(startup_program)
if args.data == 'cifar10': if args.data == 'cifar10':
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
paddle.reader.shuffle( paddle.reader.shuffle(
paddle.dataset.cifar.train10(cycle=False), buf_size=1024), paddle.dataset.cifar.train10(cycle=False), buf_size=1024),
batch_size=args.batch_size, batch_size=args.batch_size,
drop_last=True) drop_last=True)
test_reader = paddle.batch( test_reader = paddle.fluid.io.batch(
paddle.dataset.cifar.test10(cycle=False), paddle.dataset.cifar.test10(cycle=False),
batch_size=args.batch_size, batch_size=args.batch_size,
drop_last=False) drop_last=False)
elif args.data == 'imagenet': elif args.data == 'imagenet':
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
imagenet_reader.train(), imagenet_reader.train(),
batch_size=args.batch_size, batch_size=args.batch_size,
drop_last=True) drop_last=True)
test_reader = paddle.batch( test_reader = paddle.fluid.io.batch(
imagenet_reader.val(), imagenet_reader.val(),
batch_size=args.batch_size, batch_size=args.batch_size,
drop_last=False) drop_last=False)
......
...@@ -102,22 +102,22 @@ def search_mobilenetv2(config, args, image_size, is_server=True): ...@@ -102,22 +102,22 @@ def search_mobilenetv2(config, args, image_size, is_server=True):
exe.run(startup_program) exe.run(startup_program)
if args.data == 'cifar10': if args.data == 'cifar10':
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
paddle.reader.shuffle( paddle.reader.shuffle(
paddle.dataset.cifar.train10(cycle=False), buf_size=1024), paddle.dataset.cifar.train10(cycle=False), buf_size=1024),
batch_size=args.batch_size, batch_size=args.batch_size,
drop_last=True) drop_last=True)
test_reader = paddle.batch( test_reader = paddle.fluid.io.batch(
paddle.dataset.cifar.test10(cycle=False), paddle.dataset.cifar.test10(cycle=False),
batch_size=args.batch_size, batch_size=args.batch_size,
drop_last=False) drop_last=False)
elif args.data == 'imagenet': elif args.data == 'imagenet':
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
imagenet_reader.train(), imagenet_reader.train(),
batch_size=args.batch_size, batch_size=args.batch_size,
drop_last=True) drop_last=True)
test_reader = paddle.batch( test_reader = paddle.fluid.io.batch(
imagenet_reader.val(), imagenet_reader.val(),
batch_size=args.batch_size, batch_size=args.batch_size,
drop_last=False) drop_last=False)
...@@ -197,22 +197,22 @@ def test_search_result(tokens, image_size, args, config): ...@@ -197,22 +197,22 @@ def test_search_result(tokens, image_size, args, config):
exe.run(startup_program) exe.run(startup_program)
if args.data == 'cifar10': if args.data == 'cifar10':
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
paddle.reader.shuffle( paddle.reader.shuffle(
paddle.dataset.cifar.train10(cycle=False), buf_size=1024), paddle.dataset.cifar.train10(cycle=False), buf_size=1024),
batch_size=args.batch_size, batch_size=args.batch_size,
drop_last=True) drop_last=True)
test_reader = paddle.batch( test_reader = paddle.fluid.io.batch(
paddle.dataset.cifar.test10(cycle=False), paddle.dataset.cifar.test10(cycle=False),
batch_size=args.batch_size, batch_size=args.batch_size,
drop_last=False) drop_last=False)
elif args.data == 'imagenet': elif args.data == 'imagenet':
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
imagenet_reader.train(), imagenet_reader.train(),
batch_size=args.batch_size, batch_size=args.batch_size,
drop_last=True) drop_last=True)
test_reader = paddle.batch( test_reader = paddle.fluid.io.batch(
imagenet_reader.val(), batch_size=args.batch_size, drop_last=False) imagenet_reader.val(), batch_size=args.batch_size, drop_last=False)
train_loader.set_sample_list_generator( train_loader.set_sample_list_generator(
......
...@@ -113,7 +113,7 @@ def test_mnist(model, tokens=None): ...@@ -113,7 +113,7 @@ def test_mnist(model, tokens=None):
acc_set = [] acc_set = []
avg_loss_set = [] avg_loss_set = []
batch_size = 64 batch_size = 64
test_reader = paddle.batch( test_reader = paddle.fluid.io.batch(
paddle.dataset.mnist.test(), batch_size=batch_size, drop_last=True) paddle.dataset.mnist.test(), batch_size=batch_size, drop_last=True)
for batch_id, data in enumerate(test_reader()): for batch_id, data in enumerate(test_reader()):
dy_x_data = np.array([x[0].reshape(1, 28, 28) dy_x_data = np.array([x[0].reshape(1, 28, 28)
...@@ -145,7 +145,7 @@ def train_mnist(args, model, tokens=None): ...@@ -145,7 +145,7 @@ def train_mnist(args, model, tokens=None):
adam = AdamOptimizer( adam = AdamOptimizer(
learning_rate=0.001, parameter_list=model.parameters()) learning_rate=0.001, parameter_list=model.parameters())
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
paddle.dataset.mnist.train(), batch_size=BATCH_SIZE, drop_last=True) paddle.dataset.mnist.train(), batch_size=BATCH_SIZE, drop_last=True)
if args.use_data_parallel: if args.use_data_parallel:
train_reader = fluid.contrib.reader.distributed_batch_reader( train_reader = fluid.contrib.reader.distributed_batch_reader(
......
...@@ -63,7 +63,7 @@ def eval(args): ...@@ -63,7 +63,7 @@ def eval(args):
exe = fluid.Executor(place) exe = fluid.Executor(place)
exe.run(fluid.default_startup_program()) exe.run(fluid.default_startup_program())
val_reader = paddle.batch(val_reader, batch_size=args.batch_size) val_reader = paddle.fluid.io.batch(val_reader, batch_size=args.batch_size)
val_feeder = feeder = fluid.DataFeeder( val_feeder = feeder = fluid.DataFeeder(
[image, label], place, program=val_program) [image, label], place, program=val_program)
......
...@@ -161,7 +161,7 @@ ...@@ -161,7 +161,7 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"import paddle.dataset.mnist as reader\n", "import paddle.dataset.mnist as reader\n",
"train_reader = paddle.batch(\n", "train_reader = paddle.fluid.io.batch(\n",
" reader.train(), batch_size=128, drop_last=True)\n", " reader.train(), batch_size=128, drop_last=True)\n",
"train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())" "train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())"
] ]
......
...@@ -142,8 +142,8 @@ def compress(args): ...@@ -142,8 +142,8 @@ def compress(args):
args.pretrained_model)) args.pretrained_model))
fluid.io.load_vars(exe, args.pretrained_model, predicate=if_exist) fluid.io.load_vars(exe, args.pretrained_model, predicate=if_exist)
val_reader = paddle.batch(val_reader, batch_size=args.batch_size) val_reader = paddle.fluid.io.batch(val_reader, batch_size=args.batch_size)
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
train_reader, batch_size=args.batch_size, drop_last=True) train_reader, batch_size=args.batch_size, drop_last=True)
train_feeder = feeder = fluid.DataFeeder([image, label], place) train_feeder = feeder = fluid.DataFeeder([image, label], place)
......
...@@ -81,9 +81,9 @@ ...@@ -81,9 +81,9 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"import paddle.dataset.mnist as reader\n", "import paddle.dataset.mnist as reader\n",
"train_reader = paddle.batch(\n", "train_reader = paddle.fluid.io.batch(\n",
" reader.train(), batch_size=128, drop_last=True)\n", " reader.train(), batch_size=128, drop_last=True)\n",
"test_reader = paddle.batch(\n", "test_reader = paddle.fluid.io.batch(\n",
" reader.train(), batch_size=128, drop_last=True)\n", " reader.train(), batch_size=128, drop_last=True)\n",
"train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())" "train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())"
] ]
......
...@@ -159,8 +159,8 @@ def compress(args): ...@@ -159,8 +159,8 @@ def compress(args):
fluid.io.load_vars(exe, args.pretrained_model, predicate=if_exist) fluid.io.load_vars(exe, args.pretrained_model, predicate=if_exist)
val_reader = paddle.batch(val_reader, batch_size=args.batch_size) val_reader = paddle.fluid.io.batch(val_reader, batch_size=args.batch_size)
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
train_reader, batch_size=args.batch_size, drop_last=True) train_reader, batch_size=args.batch_size, drop_last=True)
train_feeder = feeder = fluid.DataFeeder([image, label], place) train_feeder = feeder = fluid.DataFeeder([image, label], place)
......
...@@ -46,7 +46,7 @@ def eval(args): ...@@ -46,7 +46,7 @@ def eval(args):
exe, exe,
model_filename=args.model_name, model_filename=args.model_name,
params_filename=args.params_name) params_filename=args.params_name)
val_reader = paddle.batch(reader.val(), batch_size=128) val_reader = paddle.fluid.io.batch(reader.val(), batch_size=128)
feeder = fluid.DataFeeder( feeder = fluid.DataFeeder(
place=place, feed_list=feed_target_names, program=val_program) place=place, feed_list=feed_target_names, program=val_program)
......
...@@ -79,9 +79,9 @@ ...@@ -79,9 +79,9 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"import paddle.dataset.mnist as reader\n", "import paddle.dataset.mnist as reader\n",
"train_reader = paddle.batch(\n", "train_reader = paddle.fluid.io.batch(\n",
" reader.train(), batch_size=128, drop_last=True)\n", " reader.train(), batch_size=128, drop_last=True)\n",
"test_reader = paddle.batch(\n", "test_reader = paddle.fluid.io.batch(\n",
" reader.train(), batch_size=128, drop_last=True)\n", " reader.train(), batch_size=128, drop_last=True)\n",
"train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())" "train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())"
] ]
......
...@@ -73,9 +73,9 @@ ...@@ -73,9 +73,9 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"import paddle.dataset.mnist as reader\n", "import paddle.dataset.mnist as reader\n",
"train_reader = paddle.batch(\n", "train_reader = paddle.fluid.io.batch(\n",
" reader.train(), batch_size=128, drop_last=True)\n", " reader.train(), batch_size=128, drop_last=True)\n",
"test_reader = paddle.batch(\n", "test_reader = paddle.fluid.io.batch(\n",
" reader.test(), batch_size=128, drop_last=True)\n", " reader.test(), batch_size=128, drop_last=True)\n",
"data_feeder = fluid.DataFeeder(inputs, place)" "data_feeder = fluid.DataFeeder(inputs, place)"
] ]
......
...@@ -68,7 +68,7 @@ def compress(args): ...@@ -68,7 +68,7 @@ def compress(args):
fluid.io.load_vars(exe, args.pretrained_model, predicate=if_exist) fluid.io.load_vars(exe, args.pretrained_model, predicate=if_exist)
val_reader = paddle.batch(val_reader, batch_size=args.batch_size) val_reader = paddle.fluid.io.batch(val_reader, batch_size=args.batch_size)
val_feeder = feeder = fluid.DataFeeder( val_feeder = feeder = fluid.DataFeeder(
[image, label], place, program=val_program) [image, label], place, program=val_program)
......
...@@ -119,8 +119,8 @@ def compress(args): ...@@ -119,8 +119,8 @@ def compress(args):
fluid.io.load_vars(exe, args.pretrained_model, predicate=if_exist) fluid.io.load_vars(exe, args.pretrained_model, predicate=if_exist)
val_reader = paddle.batch(val_reader, batch_size=args.batch_size) val_reader = paddle.fluid.io.batch(val_reader, batch_size=args.batch_size)
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
train_reader, batch_size=args.batch_size, drop_last=True) train_reader, batch_size=args.batch_size, drop_last=True)
train_feeder = feeder = fluid.DataFeeder([image, label], place) train_feeder = feeder = fluid.DataFeeder([image, label], place)
......
...@@ -117,8 +117,8 @@ def compress(args): ...@@ -117,8 +117,8 @@ def compress(args):
fluid.io.load_vars(exe, args.pretrained_model, predicate=if_exist) fluid.io.load_vars(exe, args.pretrained_model, predicate=if_exist)
val_reader = paddle.batch(val_reader, batch_size=args.batch_size) val_reader = paddle.fluid.io.batch(val_reader, batch_size=args.batch_size)
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
train_reader, batch_size=args.batch_size, drop_last=True) train_reader, batch_size=args.batch_size, drop_last=True)
train_feeder = feeder = fluid.DataFeeder([image, label], place) train_feeder = feeder = fluid.DataFeeder([image, label], place)
......
...@@ -79,7 +79,7 @@ if __name__ == '__main__': ...@@ -79,7 +79,7 @@ if __name__ == '__main__':
dataset = CASIA_Face(root=data_dir) dataset = CASIA_Face(root=data_dir)
print(len(dataset)) print(len(dataset))
print(dataset.class_nums) print(dataset.class_nums)
trainloader = paddle.batch( trainloader = paddle.fluid.io.batch(
dataset.reader, batch_size=1, drop_last=False) dataset.reader, batch_size=1, drop_last=False)
for i in range(10): for i in range(10):
for data in trainloader(): for data in trainloader():
......
...@@ -159,7 +159,7 @@ if __name__ == "__main__": ...@@ -159,7 +159,7 @@ if __name__ == "__main__":
train_dataset = CASIA_Face(root=args.train_data_dir) train_dataset = CASIA_Face(root=args.train_data_dir)
nl, nr, flods, flags = parse_filelist(args.test_data_dir) nl, nr, flods, flags = parse_filelist(args.test_data_dir)
test_dataset = LFW(nl, nr) test_dataset = LFW(nl, nr)
test_reader = paddle.batch( test_reader = paddle.fluid.io.batch(
test_dataset.reader, test_dataset.reader,
batch_size=args.test_batchsize, batch_size=args.test_batchsize,
drop_last=False) drop_last=False)
......
...@@ -166,7 +166,7 @@ def build_program(program, startup, args, is_train=True): ...@@ -166,7 +166,7 @@ def build_program(program, startup, args, is_train=True):
image = fluid.data( image = fluid.data(
name='image', shape=[-1, 3, 112, 96], dtype='float32') name='image', shape=[-1, 3, 112, 96], dtype='float32')
label = fluid.data(name='label', shape=[-1, 1], dtype='int64') label = fluid.data(name='label', shape=[-1, 1], dtype='int64')
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
train_dataset.reader, train_dataset.reader,
batch_size=args.train_batchsize // num_trainers, batch_size=args.train_batchsize // num_trainers,
drop_last=False) drop_last=False)
...@@ -187,7 +187,7 @@ def build_program(program, startup, args, is_train=True): ...@@ -187,7 +187,7 @@ def build_program(program, startup, args, is_train=True):
else: else:
nl, nr, flods, flags = parse_filelist(args.test_data_dir) nl, nr, flods, flags = parse_filelist(args.test_data_dir)
test_dataset = LFW(nl, nr) test_dataset = LFW(nl, nr)
test_reader = paddle.batch( test_reader = paddle.fluid.io.batch(
test_dataset.reader, test_dataset.reader,
batch_size=args.test_batchsize, batch_size=args.test_batchsize,
drop_last=False) drop_last=False)
...@@ -231,7 +231,7 @@ def build_program(program, startup, args, is_train=True): ...@@ -231,7 +231,7 @@ def build_program(program, startup, args, is_train=True):
def quant_val_reader_batch(): def quant_val_reader_batch():
nl, nr, flods, flags = parse_filelist(args.test_data_dir) nl, nr, flods, flags = parse_filelist(args.test_data_dir)
test_dataset = LFW(nl, nr) test_dataset = LFW(nl, nr)
test_reader = paddle.batch( test_reader = paddle.fluid.io.batch(
test_dataset.reader, batch_size=1, drop_last=False) test_dataset.reader, batch_size=1, drop_last=False)
shuffle_index = args.seed if args.seed else np.random.randint(1000) shuffle_index = args.seed if args.seed else np.random.randint(1000)
print('shuffle_index: {}'.format(shuffle_index)) print('shuffle_index: {}'.format(shuffle_index))
...@@ -347,7 +347,7 @@ def main(): ...@@ -347,7 +347,7 @@ def main():
executor=exe) executor=exe)
nl, nr, flods, flags = parse_filelist(args.test_data_dir) nl, nr, flods, flags = parse_filelist(args.test_data_dir)
test_dataset = LFW(nl, nr) test_dataset = LFW(nl, nr)
test_reader = paddle.batch( test_reader = paddle.fluid.io.batch(
test_dataset.reader, test_dataset.reader,
batch_size=args.test_batchsize, batch_size=args.test_batchsize,
drop_last=False) drop_last=False)
......
...@@ -100,7 +100,7 @@ The package `paddle.dataset.mnist` of Paddle define the downloading and reading ...@@ -100,7 +100,7 @@ The package `paddle.dataset.mnist` of Paddle define the downloading and reading
Define training data reader and test data reader as below: Define training data reader and test data reader as below:
```python ```python
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
paddle.dataset.mnist.train(), batch_size=128, drop_last=True) paddle.dataset.mnist.train(), batch_size=128, drop_last=True)
train_feeder = fluid.DataFeeder(['image', 'label'], fluid.CPUPlace(), student_program) train_feeder = fluid.DataFeeder(['image', 'label'], fluid.CPUPlace(), student_program)
``` ```
......
...@@ -66,9 +66,9 @@ def build_program(archs): ...@@ -66,9 +66,9 @@ def build_program(archs):
The dataset we used is cifar10, and `paddle.dataset.cifar` in Paddle including the download and pre-read about cifar. The dataset we used is cifar10, and `paddle.dataset.cifar` in Paddle including the download and pre-read about cifar.
```python ```python
def input_data(inputs): def input_data(inputs):
train_reader = paddle.batch(paddle.reader.shuffle(paddle.dataset.cifar.train10(cycle=False), buf_size=1024),batch_size=256) train_reader = paddle.fluid.io.batch(paddle.reader.shuffle(paddle.dataset.cifar.train10(cycle=False), buf_size=1024),batch_size=256)
train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace()) train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())
eval_reader = paddle.batch(paddle.dataset.cifar.test10(cycle=False), batch_size=256) eval_reader = paddle.fluid.io.batch(paddle.dataset.cifar.test10(cycle=False), batch_size=256)
eval_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace()) eval_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())
return train_reader, train_feeder, eval_reader, eval_feeder return train_reader, train_feeder, eval_reader, eval_feeder
``` ```
......
...@@ -74,7 +74,7 @@ Define training data reader and test data reader as below: ...@@ -74,7 +74,7 @@ Define training data reader and test data reader as below:
``` ```
import paddle.dataset.mnist as reader import paddle.dataset.mnist as reader
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
reader.train(), batch_size=128, drop_last=True) reader.train(), batch_size=128, drop_last=True)
train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace()) train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())
``` ```
......
...@@ -41,9 +41,9 @@ To speed up training process, we select MNIST dataset to train image classificat ...@@ -41,9 +41,9 @@ To speed up training process, we select MNIST dataset to train image classificat
```python ```python
import paddle.dataset.mnist as reader import paddle.dataset.mnist as reader
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
reader.train(), batch_size=128, drop_last=True) reader.train(), batch_size=128, drop_last=True)
test_reader = paddle.batch( test_reader = paddle.fluid.io.batch(
reader.train(), batch_size=128, drop_last=True) reader.train(), batch_size=128, drop_last=True)
train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace()) train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())
``` ```
......
...@@ -39,9 +39,10 @@ To speed up training process, we select MNIST dataset to train image classificat ...@@ -39,9 +39,10 @@ To speed up training process, we select MNIST dataset to train image classificat
```python ```python
import paddle.dataset.mnist as reader import paddle.dataset.mnist as reader
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
reader.train(), batch_size=128, drop_last=True) reader.train(), batch_size=128, drop_last=True)
test_reader = paddle.batch( test_reader = paddle.fluid.io.batch(
cs/en/quick_start/quant_aware_tutorial_en.md
reader.train(), batch_size=128, drop_last=True) reader.train(), batch_size=128, drop_last=True)
train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace()) train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())
``` ```
......
...@@ -45,9 +45,9 @@ Show as below: ...@@ -45,9 +45,9 @@ Show as below:
```python ```python
import paddle.dataset.mnist as reader import paddle.dataset.mnist as reader
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
reader.train(), batch_size=128, drop_last=True) reader.train(), batch_size=128, drop_last=True)
test_reader = paddle.batch( test_reader = paddle.fluid.io.batch(
reader.test(), batch_size=128, drop_last=True) reader.test(), batch_size=128, drop_last=True)
data_feeder = fluid.DataFeeder(inputs, place) data_feeder = fluid.DataFeeder(inputs, place)
``` ```
......
...@@ -125,7 +125,7 @@ place = fluid.CPUPlace() ...@@ -125,7 +125,7 @@ place = fluid.CPUPlace()
exe = fluid.Executor(place) exe = fluid.Executor(place)
exe.run(startup) exe.run(startup)
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
paddle.dataset.cifar.train10(), batch_size=32) paddle.dataset.cifar.train10(), batch_size=32)
teacher = Teacher(out_path="example_knowledge.dat", # offline mode teacher = Teacher(out_path="example_knowledge.dat", # offline mode
......
...@@ -270,7 +270,7 @@ sensitivity ...@@ -270,7 +270,7 @@ sensitivity
exe = fluid.Executor(place) exe = fluid.Executor(place)
exe.run(startup_program) exe.run(startup_program)
val_reader = paddle.batch(reader.test(), batch_size=128) val_reader = paddle.fluid.io.batch(reader.test(), batch_size=128)
val_feeder = feeder = fluid.DataFeeder( val_feeder = feeder = fluid.DataFeeder(
[image, label], place, program=main_program) [image, label], place, program=main_program)
......
...@@ -101,7 +101,7 @@ exe.run(student_startup) ...@@ -101,7 +101,7 @@ exe.run(student_startup)
为了快速执行该示例,我们选取简单的MNIST数据,Paddle框架的`paddle.dataset.mnist`包定义了MNIST数据的下载和读取。 代码如下: 为了快速执行该示例,我们选取简单的MNIST数据,Paddle框架的`paddle.dataset.mnist`包定义了MNIST数据的下载和读取。 代码如下:
```python ```python
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
paddle.dataset.mnist.train(), batch_size=128, drop_last=True) paddle.dataset.mnist.train(), batch_size=128, drop_last=True)
train_feeder = fluid.DataFeeder(['image', 'label'], fluid.CPUPlace(), student_program) train_feeder = fluid.DataFeeder(['image', 'label'], fluid.CPUPlace(), student_program)
``` ```
......
...@@ -67,9 +67,9 @@ def build_program(archs): ...@@ -67,9 +67,9 @@ def build_program(archs):
使用的数据集为cifar10,paddle框架中`paddle.dataset.cifar`包括了cifar数据集的下载和读取,代码如下: 使用的数据集为cifar10,paddle框架中`paddle.dataset.cifar`包括了cifar数据集的下载和读取,代码如下:
```python ```python
def input_data(inputs): def input_data(inputs):
train_reader = paddle.batch(paddle.reader.shuffle(paddle.dataset.cifar.train10(cycle=False), buf_size=1024),batch_size=256) train_reader = paddle.fluid.io.batch(paddle.reader.shuffle(paddle.dataset.cifar.train10(cycle=False), buf_size=1024),batch_size=256)
train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace()) train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())
eval_reader = paddle.batch(paddle.dataset.cifar.test10(cycle=False), batch_size=256) eval_reader = paddle.fluid.io.batch(paddle.dataset.cifar.test10(cycle=False), batch_size=256)
eval_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace()) eval_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())
return train_reader, train_feeder, eval_reader, eval_feeder return train_reader, train_feeder, eval_reader, eval_feeder
``` ```
......
...@@ -74,7 +74,7 @@ print("FLOPs: {}".format(FLOPs)) ...@@ -74,7 +74,7 @@ print("FLOPs: {}".format(FLOPs))
``` ```
import paddle.dataset.mnist as reader import paddle.dataset.mnist as reader
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
reader.train(), batch_size=128, drop_last=True) reader.train(), batch_size=128, drop_last=True)
train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace()) train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())
``` ```
......
...@@ -42,9 +42,9 @@ exe, train_program, val_program, inputs, outputs = \ ...@@ -42,9 +42,9 @@ exe, train_program, val_program, inputs, outputs = \
```python ```python
import paddle.dataset.mnist as reader import paddle.dataset.mnist as reader
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
reader.train(), batch_size=128, drop_last=True) reader.train(), batch_size=128, drop_last=True)
test_reader = paddle.batch( test_reader = paddle.fluid.io.batch(
reader.train(), batch_size=128, drop_last=True) reader.train(), batch_size=128, drop_last=True)
train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace()) train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())
``` ```
......
...@@ -40,9 +40,9 @@ exe, train_program, val_program, inputs, outputs = \ ...@@ -40,9 +40,9 @@ exe, train_program, val_program, inputs, outputs = \
```python ```python
import paddle.dataset.mnist as reader import paddle.dataset.mnist as reader
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
reader.train(), batch_size=128, drop_last=True) reader.train(), batch_size=128, drop_last=True)
test_reader = paddle.batch( test_reader = paddle.fluid.io.batch(
reader.train(), batch_size=128, drop_last=True) reader.train(), batch_size=128, drop_last=True)
train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace()) train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())
``` ```
......
...@@ -128,9 +128,9 @@ ...@@ -128,9 +128,9 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"def input_data(inputs):\n", "def input_data(inputs):\n",
" train_reader = paddle.batch(paddle.reader.shuffle(paddle.dataset.cifar.train10(cycle=False), buf_size=1024),batch_size=256)\n", " train_reader = paddle.fluid.io.batch(paddle.reader.shuffle(paddle.dataset.cifar.train10(cycle=False), buf_size=1024),batch_size=256)\n",
" train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())\n", " train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())\n",
" eval_reader = paddle.batch(paddle.dataset.cifar.test10(cycle=False), batch_size=256)\n", " eval_reader = paddle.fluid.io.batch(paddle.dataset.cifar.test10(cycle=False), batch_size=256)\n",
" eval_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())\n", " eval_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())\n",
" return train_reader, train_feeder, eval_reader, eval_feeder" " return train_reader, train_feeder, eval_reader, eval_feeder"
] ]
......
...@@ -44,9 +44,9 @@ place = fluid.CUDAPlace(0) ...@@ -44,9 +44,9 @@ place = fluid.CUDAPlace(0)
```python ```python
import paddle.dataset.mnist as reader import paddle.dataset.mnist as reader
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
reader.train(), batch_size=128, drop_last=True) reader.train(), batch_size=128, drop_last=True)
test_reader = paddle.batch( test_reader = paddle.fluid.io.batch(
reader.test(), batch_size=128, drop_last=True) reader.test(), batch_size=128, drop_last=True)
data_feeder = fluid.DataFeeder(inputs, place) data_feeder = fluid.DataFeeder(inputs, place)
``` ```
......
...@@ -264,8 +264,8 @@ ...@@ -264,8 +264,8 @@
} }
], ],
"source": [ "source": [
"train_reader = paddle.batch(paddle.reader.shuffle(paddle.dataset.cifar.train10(cycle=False), buf_size=1024), batch_size=BATCH_SIZE, drop_last=True)\n", "train_reader = paddle.fluid.io.batch(paddle.reader.shuffle(paddle.dataset.cifar.train10(cycle=False), buf_size=1024), batch_size=BATCH_SIZE, drop_last=True)\n",
"test_reader = paddle.batch(paddle.dataset.cifar.test10(cycle=False), batch_size=BATCH_SIZE, drop_last=False)\n", "test_reader = paddle.fluid.io.batch(paddle.dataset.cifar.test10(cycle=False), batch_size=BATCH_SIZE, drop_last=False)\n",
"train_loader.set_sample_list_generator(train_reader, places=place)\n", "train_loader.set_sample_list_generator(train_reader, places=place)\n",
"test_loader.set_sample_list_generator(test_reader, places=place)" "test_loader.set_sample_list_generator(test_reader, places=place)"
] ]
......
...@@ -236,8 +236,8 @@ exe.run(startup_program) ...@@ -236,8 +236,8 @@ exe.run(startup_program)
**注意:**本示例为了简化代码直接调用`paddle.dataset.cifar10`定义训练数据和预测数据,实际训练需要使用自定义cifar10文件中的reader。 **注意:**本示例为了简化代码直接调用`paddle.dataset.cifar10`定义训练数据和预测数据,实际训练需要使用自定义cifar10文件中的reader。
```python ```python
train_reader = paddle.batch(paddle.reader.shuffle(paddle.dataset.cifar.train10(cycle=False), buf_size=1024), batch_size=BATCH_SIZE, drop_last=True) train_reader = paddle.fluid.io.batch(paddle.reader.shuffle(paddle.dataset.cifar.train10(cycle=False), buf_size=1024), batch_size=BATCH_SIZE, drop_last=True)
test_reader = paddle.batch(paddle.dataset.cifar.test10(cycle=False), batch_size=BATCH_SIZE, drop_last=False) test_reader = paddle.fluid.io.batch(paddle.dataset.cifar.test10(cycle=False), batch_size=BATCH_SIZE, drop_last=False)
train_loader.set_sample_list_generator(train_reader, places=place) train_loader.set_sample_list_generator(train_reader, places=place)
test_loader.set_sample_list_generator(test_reader, places=place) test_loader.set_sample_list_generator(test_reader, places=place)
``` ```
......
...@@ -112,9 +112,10 @@ class TestQuantAwareCase2(unittest.TestCase): ...@@ -112,9 +112,10 @@ class TestQuantAwareCase2(unittest.TestCase):
exe = fluid.Executor(place) exe = fluid.Executor(place)
exe.run(fluid.default_startup_program()) exe.run(fluid.default_startup_program())
feeder = fluid.DataFeeder([image, label], place, program=main_prog) feeder = fluid.DataFeeder([image, label], place, program=main_prog)
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
paddle.dataset.mnist.train(), batch_size=64) paddle.dataset.mnist.train(), batch_size=64)
eval_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size=64) eval_reader = paddle.fluid.io.batch(
paddle.dataset.mnist.test(), batch_size=64)
def train(program): def train(program):
iter = 0 iter = 0
......
...@@ -50,9 +50,10 @@ class TestQuantAwareCase1(unittest.TestCase): ...@@ -50,9 +50,10 @@ class TestQuantAwareCase1(unittest.TestCase):
exe = fluid.Executor(place) exe = fluid.Executor(place)
exe.run(fluid.default_startup_program()) exe.run(fluid.default_startup_program())
feeder = fluid.DataFeeder([image, label], place, program=main_prog) feeder = fluid.DataFeeder([image, label], place, program=main_prog)
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
paddle.dataset.mnist.train(), batch_size=64) paddle.dataset.mnist.train(), batch_size=64)
eval_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size=64) eval_reader = paddle.fluid.io.batch(
paddle.dataset.mnist.test(), batch_size=64)
def train(program): def train(program):
iter = 0 iter = 0
......
...@@ -50,9 +50,10 @@ class TestQuantPostOnlyWeightCase1(unittest.TestCase): ...@@ -50,9 +50,10 @@ class TestQuantPostOnlyWeightCase1(unittest.TestCase):
exe = fluid.Executor(place) exe = fluid.Executor(place)
exe.run(fluid.default_startup_program()) exe.run(fluid.default_startup_program())
feeder = fluid.DataFeeder([image, label], place, program=main_prog) feeder = fluid.DataFeeder([image, label], place, program=main_prog)
train_reader = paddle.batch( train_reader = paddle.fluid.io.batch(
paddle.dataset.mnist.train(), batch_size=64) paddle.dataset.mnist.train(), batch_size=64)
eval_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size=64) eval_reader = paddle.fluid.io.batch(
paddle.dataset.mnist.test(), batch_size=64)
def train(program): def train(program):
iter = 0 iter = 0
......
...@@ -44,7 +44,8 @@ class TestSensitivity(unittest.TestCase): ...@@ -44,7 +44,8 @@ class TestSensitivity(unittest.TestCase):
exe = fluid.Executor(place) exe = fluid.Executor(place)
exe.run(startup_program) exe.run(startup_program)
val_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size=128) val_reader = paddle.fluid.io.batch(
paddle.dataset.mnist.test(), batch_size=128)
def eval_func(program, scope): def eval_func(program, scope):
feeder = fluid.DataFeeder( feeder = fluid.DataFeeder(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册