Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
42c97007
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
大约 1 年 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
42c97007
编写于
4月 27, 2023
作者:
G
Guanghua Yu
提交者:
GitHub
4月 27, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix reparameterization demo train (#1740)
上级
4389a804
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
312 addition
and
26 deletion
+312
-26
example/reparameterization/imagenet_reader.py
example/reparameterization/imagenet_reader.py
+245
-0
example/reparameterization/train.py
example/reparameterization/train.py
+67
-26
未找到文件。
example/reparameterization/imagenet_reader.py
0 → 100644
浏览文件 @
42c97007
import
os
import
math
import
random
import
functools
import
numpy
as
np
import
paddle
from
PIL
import
Image
,
ImageEnhance
from
paddle.io
import
Dataset
random
.
seed
(
0
)
np
.
random
.
seed
(
0
)
DATA_DIM
=
224
RESIZE_DIM
=
256
THREAD
=
16
BUF_SIZE
=
10240
DATA_DIR
=
'data/ILSVRC2012/'
DATA_DIR
=
os
.
path
.
join
(
os
.
path
.
split
(
os
.
path
.
realpath
(
__file__
))[
0
],
DATA_DIR
)
img_mean
=
np
.
array
([
0.485
,
0.456
,
0.406
]).
reshape
((
3
,
1
,
1
))
img_std
=
np
.
array
([
0.229
,
0.224
,
0.225
]).
reshape
((
3
,
1
,
1
))
def
resize_short
(
img
,
target_size
):
percent
=
float
(
target_size
)
/
min
(
img
.
size
[
0
],
img
.
size
[
1
])
resized_width
=
int
(
round
(
img
.
size
[
0
]
*
percent
))
resized_height
=
int
(
round
(
img
.
size
[
1
]
*
percent
))
img
=
img
.
resize
((
resized_width
,
resized_height
),
Image
.
LANCZOS
)
return
img
def
crop_image
(
img
,
target_size
,
center
):
width
,
height
=
img
.
size
size
=
target_size
if
center
==
True
:
w_start
=
(
width
-
size
)
//
2
h_start
=
(
height
-
size
)
//
2
else
:
w_start
=
np
.
random
.
randint
(
0
,
width
-
size
+
1
)
h_start
=
np
.
random
.
randint
(
0
,
height
-
size
+
1
)
w_end
=
w_start
+
size
h_end
=
h_start
+
size
img
=
img
.
crop
((
w_start
,
h_start
,
w_end
,
h_end
))
return
img
def
random_crop
(
img
,
size
,
scale
=
[
0.08
,
1.0
],
ratio
=
[
3.
/
4.
,
4.
/
3.
]):
aspect_ratio
=
math
.
sqrt
(
np
.
random
.
uniform
(
*
ratio
))
w
=
1.
*
aspect_ratio
h
=
1.
/
aspect_ratio
bound
=
min
((
float
(
img
.
size
[
0
])
/
img
.
size
[
1
])
/
(
w
**
2
),
(
float
(
img
.
size
[
1
])
/
img
.
size
[
0
])
/
(
h
**
2
))
scale_max
=
min
(
scale
[
1
],
bound
)
scale_min
=
min
(
scale
[
0
],
bound
)
target_area
=
img
.
size
[
0
]
*
img
.
size
[
1
]
*
np
.
random
.
uniform
(
scale_min
,
scale_max
)
target_size
=
math
.
sqrt
(
target_area
)
w
=
int
(
target_size
*
w
)
h
=
int
(
target_size
*
h
)
i
=
np
.
random
.
randint
(
0
,
img
.
size
[
0
]
-
w
+
1
)
j
=
np
.
random
.
randint
(
0
,
img
.
size
[
1
]
-
h
+
1
)
img
=
img
.
crop
((
i
,
j
,
i
+
w
,
j
+
h
))
img
=
img
.
resize
((
size
,
size
),
Image
.
LANCZOS
)
return
img
def
rotate_image
(
img
):
angle
=
np
.
random
.
randint
(
-
10
,
11
)
img
=
img
.
rotate
(
angle
)
return
img
def
distort_color
(
img
):
def
random_brightness
(
img
,
lower
=
0.5
,
upper
=
1.5
):
e
=
np
.
random
.
uniform
(
lower
,
upper
)
return
ImageEnhance
.
Brightness
(
img
).
enhance
(
e
)
def
random_contrast
(
img
,
lower
=
0.5
,
upper
=
1.5
):
e
=
np
.
random
.
uniform
(
lower
,
upper
)
return
ImageEnhance
.
Contrast
(
img
).
enhance
(
e
)
def
random_color
(
img
,
lower
=
0.5
,
upper
=
1.5
):
e
=
np
.
random
.
uniform
(
lower
,
upper
)
return
ImageEnhance
.
Color
(
img
).
enhance
(
e
)
ops
=
[
random_brightness
,
random_contrast
,
random_color
]
np
.
random
.
shuffle
(
ops
)
img
=
ops
[
0
](
img
)
img
=
ops
[
1
](
img
)
img
=
ops
[
2
](
img
)
return
img
def
process_image
(
sample
,
mode
,
color_jitter
,
rotate
,
crop_size
,
resize_size
):
img_path
=
sample
[
0
]
try
:
img
=
Image
.
open
(
img_path
)
except
:
print
(
img_path
,
"not exists!"
)
return
None
if
mode
==
'train'
:
if
rotate
:
img
=
rotate_image
(
img
)
img
=
random_crop
(
img
,
crop_size
)
else
:
img
=
resize_short
(
img
,
target_size
=
resize_size
)
img
=
crop_image
(
img
,
target_size
=
crop_size
,
center
=
True
)
if
mode
==
'train'
:
if
color_jitter
:
img
=
distort_color
(
img
)
if
np
.
random
.
randint
(
0
,
2
)
==
1
:
img
=
img
.
transpose
(
Image
.
FLIP_LEFT_RIGHT
)
if
img
.
mode
!=
'RGB'
:
img
=
img
.
convert
(
'RGB'
)
img
=
np
.
array
(
img
).
astype
(
'float32'
).
transpose
((
2
,
0
,
1
))
/
255
img
-=
img_mean
img
/=
img_std
if
mode
==
'train'
or
mode
==
'val'
:
return
img
,
sample
[
1
]
elif
mode
==
'test'
:
return
[
img
]
def
_reader_creator
(
file_list
,
mode
,
shuffle
=
False
,
color_jitter
=
False
,
rotate
=
False
,
data_dir
=
DATA_DIR
,
batch_size
=
1
):
def
reader
():
try
:
with
open
(
file_list
)
as
flist
:
full_lines
=
[
line
.
strip
()
for
line
in
flist
]
if
shuffle
:
np
.
random
.
shuffle
(
full_lines
)
lines
=
full_lines
for
line
in
lines
:
if
mode
==
'train'
or
mode
==
'val'
:
img_path
,
label
=
line
.
split
()
img_path
=
os
.
path
.
join
(
data_dir
,
img_path
)
yield
img_path
,
int
(
label
)
elif
mode
==
'test'
:
img_path
=
os
.
path
.
join
(
data_dir
,
line
)
yield
[
img_path
]
except
Exception
as
e
:
print
(
"Reader failed!
\n
{}"
.
format
(
str
(
e
)))
os
.
_exit
(
1
)
mapper
=
functools
.
partial
(
process_image
,
mode
=
mode
,
color_jitter
=
color_jitter
,
rotate
=
rotate
)
return
paddle
.
reader
.
xmap_readers
(
mapper
,
reader
,
THREAD
,
BUF_SIZE
)
def
train
(
data_dir
=
DATA_DIR
):
file_list
=
os
.
path
.
join
(
data_dir
,
'train_list.txt'
)
return
_reader_creator
(
file_list
,
'train'
,
shuffle
=
True
,
color_jitter
=
False
,
rotate
=
False
,
data_dir
=
data_dir
)
def
val
(
data_dir
=
DATA_DIR
):
file_list
=
os
.
path
.
join
(
data_dir
,
'val_list.txt'
)
return
_reader_creator
(
file_list
,
'val'
,
shuffle
=
False
,
data_dir
=
data_dir
)
def
test
(
data_dir
=
DATA_DIR
):
file_list
=
os
.
path
.
join
(
data_dir
,
'test_list.txt'
)
return
_reader_creator
(
file_list
,
'test'
,
shuffle
=
False
,
data_dir
=
data_dir
)
class
ImageNetDataset
(
Dataset
):
def
__init__
(
self
,
data_dir
=
DATA_DIR
,
mode
=
'train'
,
crop_size
=
DATA_DIM
,
resize_size
=
RESIZE_DIM
):
super
(
ImageNetDataset
,
self
).
__init__
()
self
.
data_dir
=
data_dir
self
.
crop_size
=
crop_size
self
.
resize_size
=
resize_size
train_file_list
=
os
.
path
.
join
(
data_dir
,
'train_list.txt'
)
val_file_list
=
os
.
path
.
join
(
data_dir
,
'val_list.txt'
)
test_file_list
=
os
.
path
.
join
(
data_dir
,
'test_list.txt'
)
self
.
mode
=
mode
if
mode
==
'train'
:
with
open
(
train_file_list
)
as
flist
:
full_lines
=
[
line
.
strip
()
for
line
in
flist
]
np
.
random
.
shuffle
(
full_lines
)
lines
=
full_lines
self
.
data
=
[
line
.
split
()
for
line
in
lines
]
else
:
with
open
(
val_file_list
)
as
flist
:
lines
=
[
line
.
strip
()
for
line
in
flist
]
self
.
data
=
[
line
.
split
()
for
line
in
lines
]
def
__getitem__
(
self
,
index
):
sample
=
self
.
data
[
index
]
data_path
=
os
.
path
.
join
(
self
.
data_dir
,
sample
[
0
])
if
self
.
mode
==
'train'
:
data
,
label
=
process_image
(
[
data_path
,
sample
[
1
]],
mode
=
'train'
,
color_jitter
=
False
,
rotate
=
False
,
crop_size
=
self
.
crop_size
,
resize_size
=
self
.
resize_size
)
return
data
,
np
.
array
([
label
]).
astype
(
'int64'
)
elif
self
.
mode
==
'val'
:
data
,
label
=
process_image
(
[
data_path
,
sample
[
1
]],
mode
=
'val'
,
color_jitter
=
False
,
rotate
=
False
,
crop_size
=
self
.
crop_size
,
resize_size
=
self
.
resize_size
)
return
data
,
np
.
array
([
label
]).
astype
(
'int64'
)
elif
self
.
mode
==
'test'
:
data
=
process_image
(
[
data_path
,
sample
[
1
]],
mode
=
'test'
,
color_jitter
=
False
,
rotate
=
False
,
crop_size
=
self
.
crop_size
,
resize_size
=
self
.
resize_size
)
return
data
def
__len__
(
self
):
return
len
(
self
.
data
)
example/reparameterization/train.py
浏览文件 @
42c97007
...
...
@@ -26,6 +26,8 @@ import math
import
time
import
random
import
numpy
as
np
import
distutils.util
import
six
from
paddle.distributed
import
ParallelEnv
from
paddle.static
import
load_program_state
from
paddle.vision.models
import
mobilenet_v1
...
...
@@ -35,31 +37,49 @@ from paddleslim.dygraph.rep import Reparameter, DBBRepConfig, ACBRepConfig
sys
.
path
.
append
(
os
.
path
.
join
(
os
.
path
.
dirname
(
"__file__"
)))
from
optimizer
import
create_optimizer
sys
.
path
.
append
(
os
.
path
.
join
(
os
.
path
.
dirname
(
"__file__"
),
os
.
path
.
pardir
,
os
.
path
.
pardir
))
from
utility
import
add_arguments
,
print_arguments
_logger
=
get_logger
(
__name__
,
level
=
logging
.
INFO
)
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
# yapf: disable
add_arg
(
'batch_size'
,
int
,
64
,
"Single Card Minibatch size."
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Whether to use GPU or not."
)
add_arg
(
'lr'
,
float
,
0.1
,
"The learning rate used to fine-tune pruned model."
)
add_arg
(
'lr_strategy'
,
str
,
"piecewise_decay"
,
"The learning rate decay strategy."
)
add_arg
(
'l2_decay'
,
float
,
0.00003
,
"The l2_decay parameter."
)
add_arg
(
'ls_epsilon'
,
float
,
0.0
,
"Label smooth epsilon."
)
add_arg
(
'use_pact'
,
bool
,
False
,
"Whether to use PACT method."
)
add_arg
(
'ce_test'
,
bool
,
False
,
"Whether to CE test."
)
add_arg
(
'momentum_rate'
,
float
,
0.9
,
"The value of momentum_rate."
)
add_arg
(
'num_epochs'
,
int
,
120
,
"The number of total epochs."
)
add_arg
(
'total_images'
,
int
,
1281167
,
"The number of total training images."
)
add_arg
(
'data'
,
str
,
"imagenet"
,
"Which data to use. 'cifar10' or 'imagenet'"
)
add_arg
(
'log_period'
,
int
,
10
,
"Log period in batches."
)
add_arg
(
'model_save_dir'
,
str
,
"./output_models"
,
"model save directory."
)
parser
.
add_argument
(
'--step_epochs'
,
nargs
=
'+'
,
type
=
int
,
default
=
[
30
,
60
,
90
],
help
=
"piecewise decay step"
)
# yapf: enable
def
print_arguments
(
args
):
"""Print argparse's arguments.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
parser.add_argument("name", default="Jonh", type=str, help="User name.")
args = parser.parse_args()
print_arguments(args)
:param args: Input argparse.Namespace for printing.
:type args: argparse.Namespace
"""
print
(
"----------- Configuration Arguments -----------"
)
for
arg
,
value
in
sorted
(
six
.
iteritems
(
vars
(
args
))):
print
(
"%s: %s"
%
(
arg
,
value
))
print
(
"------------------------------------------------"
)
def
add_arguments
(
argname
,
type
,
default
,
help
,
argparser
,
**
kwargs
):
"""Add argparse's argument.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
add_argument("name", str, "Jonh", "User name.", parser)
args = parser.parse_args()
"""
type
=
distutils
.
util
.
strtobool
if
type
==
bool
else
type
argparser
.
add_argument
(
"--"
+
argname
,
default
=
default
,
type
=
type
,
help
=
help
+
' Default: %(default)s.'
,
**
kwargs
)
def
load_dygraph_pretrain
(
model
,
path
=
None
,
load_static_weights
=
False
):
...
...
@@ -110,8 +130,9 @@ def train(args):
args
.
total_images
=
50000
elif
args
.
data
==
"imagenet"
:
import
imagenet_reader
as
reader
train_dataset
=
reader
.
ImageNetDataset
(
mode
=
'train'
)
val_dataset
=
reader
.
ImageNetDataset
(
mode
=
'val'
)
train_dataset
=
reader
.
ImageNetDataset
(
data_dir
=
args
.
data_dir
,
mode
=
'train'
)
val_dataset
=
reader
.
ImageNetDataset
(
data_dir
=
args
.
data_dir
,
mode
=
'val'
)
class_dim
=
1000
image_shape
=
"3,224,224"
else
:
...
...
@@ -313,11 +334,31 @@ def train(args):
])
def
main
():
def
main
(
parser
):
args
=
parser
.
parse_args
()
print_arguments
(
args
)
train
(
args
)
if
__name__
==
'__main__'
:
main
()
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
# yapf: disable
add_arg
(
'batch_size'
,
int
,
64
,
"Single Card Minibatch size."
)
add_arg
(
'data_dir'
,
str
,
"dataset/ILSVRC2012/"
,
"Single Card Minibatch size."
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Whether to use GPU or not."
)
add_arg
(
'lr'
,
float
,
0.1
,
"The learning rate used to fine-tune pruned model."
)
add_arg
(
'lr_strategy'
,
str
,
"piecewise_decay"
,
"The learning rate decay strategy."
)
add_arg
(
'l2_decay'
,
float
,
0.00003
,
"The l2_decay parameter."
)
add_arg
(
'ls_epsilon'
,
float
,
0.0
,
"Label smooth epsilon."
)
add_arg
(
'use_pact'
,
bool
,
False
,
"Whether to use PACT method."
)
add_arg
(
'ce_test'
,
bool
,
False
,
"Whether to CE test."
)
add_arg
(
'momentum_rate'
,
float
,
0.9
,
"The value of momentum_rate."
)
add_arg
(
'num_epochs'
,
int
,
120
,
"The number of total epochs."
)
add_arg
(
'total_images'
,
int
,
1281167
,
"The number of total training images."
)
add_arg
(
'data'
,
str
,
"imagenet"
,
"Which data to use. 'cifar10' or 'imagenet'"
)
add_arg
(
'log_period'
,
int
,
10
,
"Log period in batches."
)
add_arg
(
'model_save_dir'
,
str
,
"./output_models"
,
"model save directory."
)
parser
.
add_argument
(
'--step_epochs'
,
nargs
=
'+'
,
type
=
int
,
default
=
[
30
,
60
,
90
],
help
=
"piecewise decay step"
)
# yapf: enable
main
(
parser
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录