diff --git a/demo/dygraph/unstructured_pruning/README.md b/demo/dygraph/unstructured_pruning/README.md index 410a788e92d667e4c6df76a4a67e31d75a04085e..f03c8c256e9c10e04b8e5daa49234fa07a0e30c7 100644 --- a/demo/dygraph/unstructured_pruning/README.md +++ b/demo/dygraph/unstructured_pruning/README.md @@ -33,7 +33,7 @@ paddleslim>=2.2.0 默认根据参数的绝对值大小进行稀疏化,且不稀疏归一化层参数。如果开发者想更改相应的逻辑,可按照下述操作: - 开发者可以通过重写`paddleslim.dygraph.prune.unstructured_pruner.py`中的`UnstructuredPruner.mask_parameters()`和`UnstructuredPruner.update_threshold()`来定义自己的非结构化稀疏策略(目前为剪裁掉绝对值小的parameters)。 -- 开发可以在初始化`UnstructuredPruner`时,传入自定义的`skip_params_func`,来定义哪些参数不参与剪裁。`skip_params_func`示例代码如下(路径:`paddleslim.dygraph.prune.unstructured_pruner._get_skip_params())`。默认为所有的归一化层的参数不参与剪裁。 +- 开发可以在初始化`UnstructuredPruner`时,传入自定义的`skip_params_func`,来定义哪些参数不参与剪裁。`skip_params_func`示例代码如下(路径:`paddleslim.dygraph.prune.unstructured_pruner._get_skip_params())`。默认为所有的归一化层的参数和 `bias` 不参与剪裁。 ```python NORMS_ALL = [ 'BatchNorm', 'GroupNorm', 'LayerNorm', 'SpectralNorm', 'BatchNorm1D', @@ -55,6 +55,8 @@ def _get_skip_params(model): for _, sub_layer in model.named_sublayers(): if type(sub_layer).__name__.split('.')[-1] in NORMS_ALL: skip_params.add(sub_layer.full_name()) + for param in sub_layer.parameters(include_sublayers=False): + if len(param.shape) == 1: skip_params.add(param.name) return skip_params ``` diff --git a/demo/dygraph/unstructured_pruning/train.py b/demo/dygraph/unstructured_pruning/train.py index 1bdf4061972d08c413ddf3c315535de8f3f8448a..7d1c460ee5bcfb0938cac84f3a738b008c03864f 100644 --- a/demo/dygraph/unstructured_pruning/train.py +++ b/demo/dygraph/unstructured_pruning/train.py @@ -35,6 +35,7 @@ add_arg('pruning_mode', str, 'ratio', "the pruning mod add_arg('threshold', float, 0.01, "The threshold to set zeros. Default: 0.01") add_arg('num_epochs', int, 120, "The number of total epochs. Default: 120") parser.add_argument('--step_epochs', nargs='+', type=int, default=[30, 60, 90], help="piecewise decay step") +parser.add_argument('--sparse_block', nargs='+', type=int, default=[1, 1], help="There must be two integers inside this array. The array defines the shape of the block, the values within which are either sparsified to all zeros or kept original. [1, 1] means unstructured pruning. Default: [1, 1]") add_arg('data', str, "imagenet", "Which data to use. 'cifar10' or 'imagenet'. Default: imagenet") add_arg('log_period', int, 100, "Log period in batches. Default: 100") add_arg('test_period', int, 5, "Test period in epoches. Default: 5") @@ -100,13 +101,15 @@ def create_unstructured_pruner(model, args, configs=None): ratio=args.ratio, threshold=args.threshold, prune_params_type=args.prune_params_type, - local_sparsity=args.local_sparsity) + local_sparsity=args.local_sparsity, + sparse_block=args.sparse_block) else: return GMPUnstructuredPruner( model, ratio=args.ratio, prune_params_type=args.prune_params_type, local_sparsity=args.local_sparsity, + sparse_block=args.sparse_block, configs=configs) diff --git a/demo/unstructured_prune/README.md b/demo/unstructured_prune/README.md index 26429bc364583526ede66a63c6dd15a4302c9679..82e925c67e26ac5857004802469d439fc661ec96 100644 --- a/demo/unstructured_prune/README.md +++ b/demo/unstructured_prune/README.md @@ -42,7 +42,7 @@ tar -xf MobileNetV1_pretrained.tar 默认根据参数的绝对值大小进行稀疏化,且不稀疏归一化层参数。如果开发者想更改相应的逻辑,可按照下述操作: - 可以通过重写`paddleslim.prune.unstructured_pruner.py`中的`UnstructuredPruner.update_threshold()`来定义自己的非结构化稀疏策略(目前为剪裁掉绝对值小的parameters)。 -- 可以在初始化`UnstructuredPruner`时,传入自定义的`skip_params_func`,来定义哪些参数不参与剪裁。`skip_params_func`示例代码如下(路径:`paddleslim.prune.unstructured_pruner._get_skip_params()`)。默认为所有的归一化层的参数不参与剪裁。 +- 可以在初始化`UnstructuredPruner`时,传入自定义的`skip_params_func`,来定义哪些参数不参与剪裁。`skip_params_func`示例代码如下(路径:`paddleslim.prune.unstructured_pruner._get_skip_params()`)。默认为所有的归一化层的参数和 `bias` 不参与剪裁。 ```python def _get_skip_params(program): @@ -61,6 +61,9 @@ def _get_skip_params(program): if 'norm' in op.type() and 'grad' not in op.type(): for input in op.all_inputs(): skip_params.add(input.name()) + for param in program.all_parameters(): + if len(param.shape) == 1: + skip_params.add(param.name) return skip_params ``` diff --git a/demo/unstructured_prune/train.py b/demo/unstructured_prune/train.py index b3c4acf43e9cb8388c77a704001ed04d018ff65d..0682c500e3f4f2e46d7cd7b397ed9a6df4390117 100644 --- a/demo/unstructured_prune/train.py +++ b/demo/unstructured_prune/train.py @@ -39,6 +39,7 @@ add_arg('pruning_mode', str, 'ratio', "the pruning mod add_arg('ratio', float, 0.55, "The ratio to set zeros, the smaller portion will be zeros. Default: 0.55") add_arg('num_epochs', int, 120, "The number of total epochs. Default: 120") parser.add_argument('--step_epochs', nargs='+', type=int, default=[30, 60, 90], help="piecewise decay step") +parser.add_argument('--sparse_block', nargs='+', type=int, default=[1, 1], help="There must be two integers inside this array. The array defines the shape of the block, the values within which are either sparsified to all zeros or kept original. [1, 1] means unstructured pruning. Default: [1, 1]") add_arg('data', str, "imagenet", "Which data to use. 'mnist', 'cifar10' or 'imagenet'. Default: imagenet") add_arg('log_period', int, 100, "Log period in batches. Default: 100") add_arg('test_period', int, 5, "Test period in epoches. Default: 5") @@ -102,7 +103,8 @@ def create_unstructured_pruner(train_program, args, place, configs): threshold=args.threshold, prune_params_type=args.prune_params_type, place=place, - local_sparsity=args.local_sparsity) + local_sparsity=args.local_sparsity, + sparse_block=args.sparse_block) else: return GMPUnstructuredPruner( train_program, @@ -110,6 +112,7 @@ def create_unstructured_pruner(train_program, args, place, configs): prune_params_type=args.prune_params_type, place=place, local_sparsity=args.local_sparsity, + sparse_block=args.sparse_block, configs=configs) @@ -312,7 +315,6 @@ def compress(args): fetch_list=[avg_cost.name, acc_top1.name, acc_top5.name]) # GMP pruner step 2: step() to update ratios and other internal states of the pruner. pruner.step() - train_run_cost += time.time() - train_start total_samples += args.batch_size loss_n = np.mean(loss_n) diff --git a/docs/zh_cn/api_cn/dygraph/pruners/unstructured_pruner.rst b/docs/zh_cn/api_cn/dygraph/pruners/unstructured_pruner.rst index 19086aab4abd9d9c6614490cf65984e07c4a3ec4..3a163a1dfb607d30ffe44d74adfe7f5a21e76441 100644 --- a/docs/zh_cn/api_cn/dygraph/pruners/unstructured_pruner.rst +++ b/docs/zh_cn/api_cn/dygraph/pruners/unstructured_pruner.rst @@ -4,7 +4,7 @@ UnstructuredPruner ---------- -.. py:class:: paddleslim.UnstructuredPruner(model, mode, threshold=0.01, ratio=0.55, prune_params_type=None, skip_params_func=None, local_sparsity=False) +.. py:class:: paddleslim.UnstructuredPruner(model, mode, threshold=0.01, ratio=0.55, prune_params_type=None, skip_params_func=None, local_sparsity=False, sparse_block=[1,1]) `源代码 `_ @@ -17,7 +17,7 @@ UnstructuredPruner - **ratio(float)** - 稀疏化比例期望,只有在 mode=='ratio' 时才会生效。 - **threshold(float)** - 稀疏化阈值期望,只有在 mode=='threshold' 时才会生效。 - **prune_params_type(String)** - 用以指定哪些类型的参数参与稀疏。目前只支持None和"conv1x1_only"两个选项,后者表示只稀疏化1x1卷积。而前者表示稀疏化除了归一化层的参数。 -- **skip_params_func(function)** - 一个指向function的指针,该function定义了哪些参数不应该被剪裁,默认(None)时代表所有归一化层参数不参与剪裁。示例代码如下: +- **skip_params_func(function)** - 一个指向function的指针,该function定义了哪些参数不应该被剪裁,默认(None)时代表所有归一化层参数和 bias 不参与剪裁。示例代码如下: .. code-block:: python @@ -28,7 +28,7 @@ UnstructuredPruner def _get_skip_params(model): """ This function is used to check whether the given model's layers are valid to be pruned. - Usually, the convolutions are to be pruned while we skip the normalization-related parameters. + Usually, the convolutions are to be pruned while we skip the normalization-related parameters and bias. Deverlopers could replace this function by passing their own when initializing the UnstructuredPuner instance. Args: @@ -40,11 +40,14 @@ UnstructuredPruner for _, sub_layer in model.named_sublayers(): if type(sub_layer).__name__.split('.')[-1] in NORMS_ALL: skip_params.add(sub_layer.full_name()) + for param in sub_layer.parameters(include_sublayers=False): + if len(param.shape) == 1: skip_params.add(param.name) return skip_params .. - **local_sparsity(bool)** - 剪裁比例(ratio)应用的范围:local_sparsity 开启时意味着每个参与剪裁的参数矩阵稀疏度均为 'ratio', 关闭时表示只保证模型整体稀疏度达到'ratio',但是每个参数矩阵的稀疏度可能存在差异。 +- **sparse_block(Array)** - 一个含有两个正整数的数组,定义了稀疏化时候block的大小。即 sparse_block[0] x sparse_block[1]中的参数作为一个整体,要么被置0,要么保持不变。默认为 [1,1],代表非结构化稀疏。 **返回:** 一个UnstructuredPruner类的实例。 @@ -245,6 +248,7 @@ GMPUnstructuredPruner - **prune_params_type(str)** - 用以指定哪些类型的参数参与稀疏。目前只支持None和"conv1x1_only"两个选项,后者表示只稀疏化1x1卷积。而前者表示稀疏化除了归一化层的参数。 - **skip_params_func(function)** - 一个指向function的指针,该function定义了哪些参数不应该被剪裁,默认(None)时代表所有归一化层参数不参与剪裁。 - **local_sparsity(bool)** - 剪裁比例(ratio)应用的范围:local_sparsity 开启时意味着每个参与剪裁的参数矩阵稀疏度均为 'ratio', 关闭时表示只保证模型整体稀疏度达到'ratio',但是每个参数矩阵的稀疏度可能存在差异。 +- **sparse_block(Array)** - 一个含有两个正整数的数组,定义了稀疏化时候block的大小。即 sparse_block[0] x sparse_block[1]中的参数作为一个整体,要么被置0,要么保持不变。默认为 [1,1],代表非结构化稀疏。 - **configs(Dict)** - 传入额外的训练超参用以指导GMP训练过程。各参数介绍如下: .. code-block:: python diff --git a/docs/zh_cn/api_cn/static/prune/unstructured_prune_api.rst b/docs/zh_cn/api_cn/static/prune/unstructured_prune_api.rst index 298175faf0a986c5ffd9cb589a512574588ba701..839a6cec5a6635ac585eac131d6a4a6edbfb973f 100644 --- a/docs/zh_cn/api_cn/static/prune/unstructured_prune_api.rst +++ b/docs/zh_cn/api_cn/static/prune/unstructured_prune_api.rst @@ -4,7 +4,7 @@ UnstrucuturedPruner ---------- -.. py:class:: paddleslim.prune.UnstructuredPruner(program, mode, ratio=0.55, threshold=1e-2, scope=None, place=None, prune_params_type, skip_params_func=None, local_sparsity=False) +.. py:class:: paddleslim.prune.UnstructuredPruner(program, mode, ratio=0.55, threshold=1e-2, scope=None, place=None, prune_params_type, skip_params_func=None, local_sparsity=False, sparse_block=[1,1]) `源代码 `_ @@ -19,14 +19,14 @@ UnstrucuturedPruner - **scope(paddle.static.Scope)** - 一个paddle.static.Scope对象,存储了所有变量的数值,默认(None)时表示paddle.static.global_scope。 - **place(CPUPlace|CUDAPlace)** - 模型执行的设备,类型为CPUPlace或者CUDAPlace,默认(None)时代表CPUPlace。 - **prune_params_type(String)** - 用以指定哪些类型的参数参与稀疏。目前只支持None和"conv1x1_only"两个选项,后者表示只稀疏化1x1卷积。而前者表示稀疏化除了归一化的参数。 -- **skip_params_func(function)** - 一个指向function的指针,该function定义了哪些参数不应该被剪裁,默认(None)时代表所有归一化层参数不参与剪裁。 +- **skip_params_func(function)** - 一个指向function的指针,该function定义了哪些参数不应该被剪裁,默认(None)时代表所有归一化层参数和 bias 不参与剪裁。 .. code-block:: python def _get_skip_params(program): """ The function is used to get a set of all the skipped parameters when performing pruning. - By default, the normalization-related ones will not be pruned. + By default, the normalization-related ones and bias will not be pruned. Developers could replace it by passing their own function when initializing the UnstructuredPruner instance. Args: - program(paddle.static.Program): the current model. @@ -39,11 +39,15 @@ UnstrucuturedPruner if 'norm' in op.type() and 'grad' not in op.type(): for input in op.all_inputs(): skip_params.add(input.name()) + for param in program.all_parameters(): + if len(param.shape) == 1: + skip_params.add(param.name) return skip_params .. - **local_sparsity(bool)** - 剪裁比例(ratio)应用的范围:local_sparsity 开启时意味着每个参与剪裁的参数矩阵稀疏度均为 'ratio', 关闭时表示只保证模型整体稀疏度达到'ratio',但是每个参数矩阵的稀疏度可能存在差异。 +- **sparse_block(Array)** - 一个含有两个正整数的数组,定义了稀疏化时候block的大小。即 sparse_block[0] x sparse_block[1]中的参数作为一个整体,要么被置0,要么保持不变。默认为 [1,1],代表非结构化稀疏。 **返回:** 一个UnstructuredPruner类的实例 @@ -339,6 +343,8 @@ GMPUnstrucuturedPruner - **prune_params_type(String)** - 用以指定哪些类型的参数参与稀疏。目前只支持None和"conv1x1_only"两个选项,后者表示只稀疏化1x1卷积。而前者表示稀疏化除了归一化的参数。 - **skip_params_func(function)** - 一个指向function的指针,该function定义了哪些参数不应该被剪裁,默认(None)时代表所有归一化层参数不参与剪裁。 - **local_sparsity(bool)** - 剪裁比例(ratio)应用的范围:local_sparsity 开启时意味着每个参与剪裁的参数矩阵稀疏度均为 'ratio', 关闭时表示只保证模型整体稀疏度达到'ratio',但是每个参数矩阵的稀疏度可能存在差异。 +- **sparse_block(Array)** - 一个含有两个正整数的数组,定义了稀疏化时候block的大小。即 sparse_block[0] x sparse_block[1]中的参数作为一个整体,要么被置0,要么保持不变。默认为 [1,1],代表非结构化稀疏。 + - **configs(Dict)** - 传入额外的训练超参用以指导GMP训练过程。具体描述如下: .. code-block:: python diff --git a/paddleslim/dygraph/prune/unstructured_pruner.py b/paddleslim/dygraph/prune/unstructured_pruner.py index 4e7663352b782aabeac321836e54fa394f382391..f8c21316f1ac125a2544bf4ba1848f222552d8b3 100644 --- a/paddleslim/dygraph/prune/unstructured_pruner.py +++ b/paddleslim/dygraph/prune/unstructured_pruner.py @@ -2,6 +2,8 @@ import numpy as np import paddle import logging from paddleslim.common import get_logger +from paddleslim.prune.unstructured_pruner_utils import * +import copy __all__ = ["UnstructuredPruner", "GMPUnstructuredPruner"] @@ -25,6 +27,7 @@ class UnstructuredPruner(): - prune_params_type(str): The argument to control which type of ops will be pruned. Currently we only support None (all but norms) or conv1x1_only as input. It acts as a straightforward call to conv1x1 pruning. Default: None - skip_params_func(function): The function used to select the parameters which should be skipped when performing pruning. Default: normalization-related params. - local_sparsity(bool): Whether to enable local sparsity. Local sparsity means all the weight matrices have the same sparsity. And the global sparsity only ensures the whole model's sparsity is equal to the passed-in 'ratio'. Default: False + - sparse_block(Array): There must be two integers inside this array. The array defines the shape of the block, the values within which are either sparsified to all zeros or kept original. [1, 1] means unstructured pruning. Default: [1,1] """ def __init__(self, @@ -34,18 +37,28 @@ class UnstructuredPruner(): ratio=0.55, prune_params_type=None, skip_params_func=None, - local_sparsity=False): + local_sparsity=False, + sparse_block=[1, 1]): assert mode in ('ratio', 'threshold' ), "mode must be selected from 'ratio' and 'threshold'" assert prune_params_type is None or prune_params_type == 'conv1x1_only', "prune_params_type only supports None or conv1x1_only for now." if local_sparsity: assert mode == 'ratio', "We don't support local_sparsity==True and mode=='threshold' at the same time, please change the inputs accordingly." + assert len( + sparse_block + ) == 2 and sparse_block[0] > 0 and sparse_block[1] > 0 and isinstance( + sparse_block[0], int + ) and isinstance( + sparse_block[1], int + ), "Please make sure you provide a valid sparse block, in which there are two positive integers." + self.model = model self.mode = mode self.threshold = threshold self.ratio = ratio self.local_sparsity = local_sparsity self.thresholds = {} + self.sparse_block = sparse_block # Prority: passed-in skip_params_func > prune_params_type (conv1x1_only) > built-in _get_skip_params if skip_params_func is not None: @@ -97,6 +110,17 @@ class UnstructuredPruner(): continue t_param = param.value().get_tensor() v_param = np.array(t_param) + + if (self.sparse_block[0] * self.sparse_block[1] / v_param.size + >= BLOCK_SPARSE_ACCURATE_THRESHOLD): + print( + "Your sparse block size {} might be too large for the param {} with shape {}, the sparsity of this param might not be precise. Please decrease your sparse block size if possible. Currently, sparse_block[0] ({}) X sparse_block[1] ({}) / weight_count ({}) >= {}". + format(self.sparse_block, param, v_param.shape, + self.sparse_block[0], self.sparse_block[1], + v_param.size, BLOCK_SPARSE_ACCURATE_THRESHOLD)) + v_param = cal_mxn_avg_matrix( + v_param, m=self.sparse_block[0], n=self.sparse_block[1]) + if self.local_sparsity: flatten_v_param = v_param.flatten() cur_length = flatten_v_param.size @@ -119,11 +143,13 @@ class UnstructuredPruner(): if param.name in self.skip_params: continue mask = self.masks.get(param.name) + v_param = np.array(param.value().get_tensor()) + v_param_avg = cal_mxn_avg_matrix( + v_param, m=self.sparse_block[0], n=self.sparse_block[1]) if self.local_sparsity: - bool_tmp = ( - paddle.abs(param) >= self.thresholds[param.name]) + bool_tmp = (abs(v_param_avg) >= self.thresholds[param.name]) else: - bool_tmp = (paddle.abs(param) >= self.threshold) + bool_tmp = (abs(v_param_avg) >= self.threshold) paddle.assign(bool_tmp, output=mask) def set_static_masks(self): @@ -234,7 +260,7 @@ class UnstructuredPruner(): def _get_skip_params(self, model): """ This function is used to check whether the given model's layers are valid to be pruned. - Usually, the convolutions are to be pruned while we skip the normalization-related parameters. + Usually, the convolutions are to be pruned while we skip the normalization-related parameters and bias. Deverlopers could replace this function by passing their own when initializing the UnstructuredPuner instance. Args: @@ -246,6 +272,9 @@ class UnstructuredPruner(): for _, sub_layer in model.named_sublayers(): if type(sub_layer).__name__.split('.')[-1] in NORMS_ALL: skip_params.add(sub_layer.full_name()) + # exclude bias whose shape is like (n,) + for param in sub_layer.parameters(include_sublayers=False): + if len(param.shape) == 1: skip_params.add(param.name) return skip_params def _get_skip_params_conv1x1(self, model): @@ -254,6 +283,8 @@ class UnstructuredPruner(): if type(sub_layer).__name__.split('.')[-1] in NORMS_ALL: skip_params.add(sub_layer.full_name()) for param in sub_layer.parameters(include_sublayers=False): + # exclude bias whose shape is like (n,) + if len(param.shape) == 1: skip_params.add(param.name) cond = len(param.shape) == 4 and param.shape[ 2] == 1 and param.shape[3] == 1 if not cond: skip_params.add(param.name) @@ -275,6 +306,7 @@ class GMPUnstructuredPruner(UnstructuredPruner): - prune_params_type(str): The argument to control which type of ops will be pruned. Currently we only support None (all but norms) or conv1x1_only as input. It acts as a straightforward call to conv1x1 pruning. Default: None - skip_params_func(function): The function used to select the parameters which should be skipped when performing pruning. Default: normalization-related params. - local_sparsity(bool): Whether to enable local sparsity. Local sparsity means all the weight matrices have the same sparsity. And the global sparsity only ensures the whole model's sparsity is equal to the passed-in 'ratio'. Default: False + - sparse_block(Array): There must be two integers inside this array. The array defines a block, the values within which are either sparsified to all zeros or kept original. [1, 1] means unstructured pruning. Default: [1,1] - configs(Dict): The dictionary contains all the configs for GMP pruner. Default: None .. code-block:: python @@ -296,12 +328,13 @@ class GMPUnstructuredPruner(UnstructuredPruner): prune_params_type=None, skip_params_func=None, local_sparsity=False, + sparse_block=[1, 1], configs=None): assert configs is not None, "Configs must be passed in for GMP pruner." super(GMPUnstructuredPruner, self).__init__( model, 'ratio', 0.0, ratio, prune_params_type, skip_params_func, - local_sparsity) + local_sparsity, sparse_block) self.stable_iterations = configs.get('stable_iterations') self.pruning_iterations = configs.get('pruning_iterations') self.tunning_iterations = configs.get('tunning_iterations') diff --git a/paddleslim/prune/__init__.py b/paddleslim/prune/__init__.py index 2a4015a59507bf55e355cd9b0045d8b24bc0ac60..af0c34ea8f4f7a8970a79d64bdf0bf5fd2b2a594 100644 --- a/paddleslim/prune/__init__.py +++ b/paddleslim/prune/__init__.py @@ -29,6 +29,8 @@ from .collections import * from ..prune import collections from .unstructured_pruner import * from ..prune import unstructured_pruner +from .unstructured_pruner_utils import * +from ..prune import unstructured_pruner_utils from .idx_selector import * from ..prune import idx_selector __all__ = [] @@ -40,5 +42,6 @@ __all__ += prune_worker.__all__ __all__ += prune_io.__all__ __all__ += criterion.__all__ __all__ += unstructured_pruner.__all__ +__all__ += unstructured_pruner_utils.__all__ __all__ += idx_selector.__all__ __all__ += collections.__all__ diff --git a/paddleslim/prune/unstructured_pruner.py b/paddleslim/prune/unstructured_pruner.py index e6787395ac8e5261cdb98cf7b959801f51236756..0fa993e958dc673792813ad10ee16e30229b8e81 100644 --- a/paddleslim/prune/unstructured_pruner.py +++ b/paddleslim/prune/unstructured_pruner.py @@ -1,6 +1,7 @@ import numpy as np from ..common import get_logger from ..core import GraphWrapper +from paddleslim.prune.unstructured_pruner_utils import * import paddle import copy @@ -19,8 +20,9 @@ class UnstructuredPruner(): - scope(paddle.static.Scope): The scope storing values of all variables. None means paddle.static.global_scope. Default: None. - place(CPUPlace | CUDAPlace): The device place used to execute model. None means CPUPlace. Default: None. - prune_params_type(str): The argument to control which type of ops will be pruned. Currently we only support None (all but norms) or conv1x1_only as input. It acts as a straightforward call to conv1x1 pruning. Default: None - - skip_params_func(function): The function used to select the parameters which should be skipped when performing pruning. Default: normalization-related params. Default: None + - skip_params_func(function): The function used to select the parameters which should be skipped when performing pruning. Default: normalization-related params and bias. Default: None - local_sparsity(bool): Whether to enable local sparsity. Local sparsity means all the weight matrices have the same sparsity. And the global sparsity only ensures the whole model's sparsity is equal to the passed-in 'ratio'. Default: False + - sparse_block(Array): There must be two integers inside this array. The array defines the shape of the block, the values within which are either sparsified to all zeros or kept original. [1, 1] means unstructured pruning. Default: [1,1] """ def __init__(self, @@ -32,18 +34,28 @@ class UnstructuredPruner(): place=None, prune_params_type=None, skip_params_func=None, - local_sparsity=False): + local_sparsity=False, + sparse_block=[1, 1]): self.mode = mode self.ratio = ratio self.threshold = threshold self.local_sparsity = local_sparsity self.thresholds = {} + self.sparse_block = sparse_block assert self.mode in [ 'ratio', 'threshold' ], "mode must be selected from 'ratio' and 'threshold'" assert prune_params_type is None or prune_params_type == 'conv1x1_only', "prune_params_type only supports None or conv1x1_only for now." if self.local_sparsity: assert self.mode == 'ratio', "We don't support local_sparsity==True and mode=='threshold' at the same time, please change the inputs accordingly." + assert len( + sparse_block + ) == 2 and sparse_block[0] > 0 and sparse_block[1] > 0 and isinstance( + sparse_block[0], int + ) and isinstance( + sparse_block[1], int + ), "Please make sure you provide a valid sparse block, in which there are two positive integers." + self.scope = paddle.static.global_scope() if scope == None else scope self.place = paddle.static.cpu_places()[0] if place is None else place @@ -161,6 +173,15 @@ class UnstructuredPruner(): continue t_param = self.scope.find_var(param).get_tensor() v_param = np.array(t_param) + if (self.sparse_block[0] * self.sparse_block[1] / v_param.size >= + BLOCK_SPARSE_ACCURATE_THRESHOLD): + print( + "Your sparse block size {} might be too large for the param {} with shape {}, the sparsity of this param might not be precise. Please decrease your sparse block size if possible. Currently, sparse_block[0] ({}) X sparse_block[1] ({}) / weight_count ({}) >= {}". + format(self.sparse_block, param, v_param.shape, + self.sparse_block[0], self.sparse_block[1], + v_param.size, BLOCK_SPARSE_ACCURATE_THRESHOLD)) + v_param = cal_mxn_avg_matrix( + v_param, m=self.sparse_block[0], n=self.sparse_block[1]) if self.local_sparsity: cur_threshold = self._partition_sort(v_param.flatten()) self.thresholds[param] = cur_threshold @@ -188,10 +209,12 @@ class UnstructuredPruner(): t_param = self.scope.find_var(param).get_tensor() t_mask = self.scope.find_var(mask_name).get_tensor() v_param = np.array(t_param) + v_param_avg = cal_mxn_avg_matrix( + v_param, m=self.sparse_block[0], n=self.sparse_block[1]) if self.local_sparsity: - v_param[np.abs(v_param) < self.thresholds[param]] = 0 + v_param[np.abs(v_param_avg) < self.thresholds[param]] = 0 else: - v_param[np.abs(v_param) < self.threshold] = 0 + v_param[np.abs(v_param_avg) < self.threshold] = 0 v_mask = (v_param != 0).astype(v_param.dtype) t_mask.set(v_mask, self.place) @@ -265,6 +288,10 @@ class UnstructuredPruner(): if 'norm' in op.type() and 'grad' not in op.type(): for input in op.all_inputs(): skip_params.add(input.name()) + # exclude bias whose shape is like (n,) + for param in program.all_parameters(): + if len(param.shape) == 1: + skip_params.add(param.name) return skip_params def _get_skip_params_conv1x1(self, program): @@ -275,6 +302,9 @@ class UnstructuredPruner(): for input in op.all_inputs(): skip_params.add(input.name()) for param in program.all_parameters(): + # exclude bias whose shape is like (n,) + if len(param.shape) == 1: + skip_params.add(param.name) if not (len(param.shape) == 4 and param.shape[2] == 1 and param.shape[3] == 1): skip_params.add(param.name) @@ -322,6 +352,7 @@ class GMPUnstructuredPruner(UnstructuredPruner): - prune_params_type(str): The argument to control which type of ops will be pruned. Currently we only support None (all but norms) or conv1x1_only as input. It acts as a straightforward call to conv1x1 pruning. Default: None - skip_params_func(function): The function used to select the parameters which should be skipped when performing pruning. Default: normalization-related params. Default: None - local_sparsity(bool): Whether to enable local sparsity. Local sparsity means all the weight matrices have the same sparsity. And the global sparsity only ensures the whole model's sparsity is equal to the passed-in 'ratio'. Default: False + - sparse_block(Array): There must be two integers inside this array. The array defines the shape of the block, the values within which are either sparsified to all zeros or kept original. [1, 1] means unstructured pruning. Default: [1,1] - configs(Dict): The dictionary contains all the configs for GMP pruner. Default: None. The detailed description is as below: .. code-block:: python @@ -344,12 +375,13 @@ class GMPUnstructuredPruner(UnstructuredPruner): prune_params_type=None, skip_params_func=None, local_sparsity=False, + sparse_block=[1, 1], configs=None): assert configs is not None, "Please pass in a valid config dictionary." super(GMPUnstructuredPruner, self).__init__( program, 'ratio', ratio, 0.0, scope, place, prune_params_type, - skip_params_func, local_sparsity) + skip_params_func, local_sparsity, sparse_block) self.stable_iterations = configs.get('stable_iterations') self.pruning_iterations = configs.get('pruning_iterations') self.tunning_iterations = configs.get('tunning_iterations') diff --git a/paddleslim/prune/unstructured_pruner_utils.py b/paddleslim/prune/unstructured_pruner_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..724db8cd44d59299389ed8a3cf83c278c844243e --- /dev/null +++ b/paddleslim/prune/unstructured_pruner_utils.py @@ -0,0 +1,18 @@ +import numpy as np +import copy + +__all__ = ["BLOCK_SPARSE_ACCURATE_THRESHOLD", "cal_mxn_avg_matrix"] + +BLOCK_SPARSE_ACCURATE_THRESHOLD = 0.05 + + +def cal_mxn_avg_matrix(mat, m=1, n=1): + if m == 1 and n == 1: return copy.deepcopy(mat) + avg_mat = np.zeros_like(mat) + rows = len(mat) // m + 1 + cols = len(mat[0]) // n + 1 + for row in range(rows): + for col in range(cols): + avg_mat[m * row:m * row + m, n * col:n * col + n] = np.mean(mat[ + m * row:m * row + m, n * col:n * col + n]) + return avg_mat diff --git a/tests/dygraph/test_unstructured_prune.py b/tests/dygraph/test_unstructured_prune.py index 2a0f634248a8816724712ee20da7518feacb76b7..ac149b96a7c47411b708b0df354613b0db787048 100644 --- a/tests/dygraph/test_unstructured_prune.py +++ b/tests/dygraph/test_unstructured_prune.py @@ -16,6 +16,7 @@ class TestUnstructuredPruner(unittest.TestCase): def _gen_model(self): self.net = mobilenet_v1(num_classes=10, pretrained=False) self.net_conv1x1 = mobilenet_v1(num_classes=10, pretrained=False) + self.net_mxn = mobilenet_v1(num_classes=10, pretrained=False) self.pruner = UnstructuredPruner( self.net, mode='ratio', ratio=0.55, local_sparsity=True) self.pruner_conv1x1 = UnstructuredPruner( @@ -24,6 +25,12 @@ class TestUnstructuredPruner(unittest.TestCase): ratio=0.55, prune_params_type='conv1x1_only', local_sparsity=False) + self.pruner_mxn = UnstructuredPruner( + self.net_mxn, + mode='ratio', + ratio=0.55, + local_sparsity=True, + sparse_block=[2, 1]) def test_prune(self): ori_sparsity = UnstructuredPruner.total_sparse(self.net) @@ -69,6 +76,12 @@ class TestUnstructuredPruner(unittest.TestCase): cur_sparsity = UnstructuredPruner.total_sparse_conv1x1(self.net_conv1x1) self.assertTrue(abs(cur_sparsity - 0.55) < 0.01) + def test_block_prune_mxn(self): + self.pruner_mxn.step() + self.pruner_mxn.update_params() + cur_sparsity = UnstructuredPruner.total_sparse(self.net_mxn) + self.assertTrue(abs(cur_sparsity - 0.55) < 0.01) + if __name__ == "__main__": unittest.main() diff --git a/tests/dygraph/test_unstructured_prune_quant.py b/tests/dygraph/test_unstructured_prune_quant.py index 96408580d1cb9ce26943baac944f5658311a81e2..74851426605261b7167ce5ac3d5bdd1429c77228 100644 --- a/tests/dygraph/test_unstructured_prune_quant.py +++ b/tests/dygraph/test_unstructured_prune_quant.py @@ -64,7 +64,7 @@ class TestStaticMasks(unittest.TestCase): sparsity_2 = UnstructuredPruner.total_sparse(net) print(sparsity_0, sparsity_1, sparsity_2) self.assertEqual(sparsity_0, 1.0) - self.assertEqual(sparsity_2, 1.0) + self.assertLess(abs(sparsity_2 - 1), 0.001) self.assertLess(sparsity_1, 1.0) diff --git a/tests/test_unstructured_pruner.py b/tests/test_unstructured_pruner.py index 2f34f25b77648772a3f626a0c6edd5c51663efa6..37a68d91673062387c4e3e3a53b3830455de6326 100644 --- a/tests/test_unstructured_pruner.py +++ b/tests/test_unstructured_pruner.py @@ -54,6 +54,14 @@ class TestUnstructuredPruner(StaticCase): place=place, prune_params_type='conv1x1_only', local_sparsity=False) + self.pruner_mxn = UnstructuredPruner( + self.main_program, + 'ratio', + scope=self.scope, + place=place, + sparse_block=[5, 5], + prune_params_type='conv1x1_only', + local_sparsity=True) def test_unstructured_prune(self): for param in self.main_program.global_block().all_parameters(): @@ -102,6 +110,18 @@ class TestUnstructuredPruner(StaticCase): self.assertTrue( self.pruner.skip_params < self.pruner_conv1x1.skip_params) + def test_block_pruner_mxn(self): + ori_sparsity = UnstructuredPruner.total_sparse_conv1x1( + self.main_program) + self.pruner_mxn.ratio = 0.50 + self.pruner_mxn.step() + self.pruner_mxn.update_params() + cur_sparsity = UnstructuredPruner.total_sparse_conv1x1( + self.main_program) + print('original sparsity: {}.'.format(ori_sparsity)) + print('current sparsity: {}.'.format(cur_sparsity)) + self.assertGreater(cur_sparsity, ori_sparsity) + def test_sparsity_conv1x1(self): ori_sparsity = UnstructuredPruner.total_sparse_conv1x1( self.main_program) diff --git a/tests/test_unstructured_pruner_quant.py b/tests/test_unstructured_pruner_quant.py index 95c877ac5f38b6d66f7dcbb562cb095397057c62..7a9446c63a18d632a05d40b638397e90e6cb96fc 100644 --- a/tests/test_unstructured_pruner_quant.py +++ b/tests/test_unstructured_pruner_quant.py @@ -59,7 +59,7 @@ class TestStaticMasks(StaticCase): sparsity_2 = UnstructuredPruner.total_sparse(main_program) print(sparsity_0, sparsity_1, sparsity_2) self.assertEqual(sparsity_0, 1.0) - self.assertEqual(sparsity_2, 1.0) + self.assertLess(abs(sparsity_2 - 1), 0.001) self.assertLess(sparsity_1, 1.0)