Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
21858a78
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
大约 2 年 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
21858a78
编写于
1月 03, 2020
作者:
B
baiyfbupt
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Deployed
9bcff00c
with MkDocs version: 1.0.4
上级
e4e5d3e0
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
293 addition
and
454 deletion
+293
-454
index.html
index.html
+1
-1
model_zoo2/index.html
model_zoo2/index.html
+291
-452
search/search_index.json
search/search_index.json
+1
-1
sitemap.xml.gz
sitemap.xml.gz
+0
-0
未找到文件。
index.html
浏览文件 @
21858a78
...
...
@@ -298,5 +298,5 @@
<!--
MkDocs version : 1.0.4
Build Date UTC : 2020-01-03 0
2:58:44
Build Date UTC : 2020-01-03 0
3:48:30
-->
model_zoo2/index.html
浏览文件 @
21858a78
...
...
@@ -136,9 +136,7 @@
<li><a
class=
"toctree-l3"
href=
"#11"
>
1.1 图象分类
</a></li>
<li><a
class=
"toctree-l3"
href=
"#121"
>
1.2.1 目标检测
</a></li>
<li><a
class=
"toctree-l3"
href=
"#122"
>
1.2.2 目标检测
</a></li>
<li><a
class=
"toctree-l3"
href=
"#12"
>
1.2 目标检测
</a></li>
<li><a
class=
"toctree-l3"
href=
"#13"
>
1.3 图像分割
</a></li>
...
...
@@ -217,386 +215,276 @@
<th
align=
"center"
>
Model
</th>
<th
align=
"center"
>
Top-1/Top-5
</th>
<th
align=
"center"
>
模型大小(MB)
</th>
<th
align=
"center"
>
下载
</th>
</tr>
</thead>
<tbody>
<tr>
<td
align=
"center"
>
MobileNetV1 FP32
</td>
<td
align=
"center"
>
<a
href=
"http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar"
>
70.99%/89.68%
</a>
</td>
<td
align=
"center"
>
70.99%/89.68%
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNetV1 quant_post
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
>
xx%/xx%
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNetV1 quant_aware
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
>
xx%/xx%
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNetV2 FP32
</td>
<td
align=
"center"
>
<a
href=
"https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar"
>
72.15%/90.65%
</a>
</td>
<td
align=
"center"
>
72.15%/90.65%
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNetV2 quant_post
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
>
xx%/xx%
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNetV2 quant_aware
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
>
xx%/xx%
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
ResNet50 FP32
</td>
<td
align=
"center"
>
<a
href=
"http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar"
>
76.50%/93.00%
</a>
</td>
<td
align=
"center"
>
76.50%/93.00%
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
ResNet50 quant_post
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
>
xx%/xx%
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
ResNet50 quant_aware
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
>
xx%/xx%
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
</tbody>
</table>
<h3
id=
"12
1"
>
1.2.1 目标检测
<a
class=
"headerlink"
href=
"#121
"
title=
"Permanent link"
>
#
</a></h3>
<h3
id=
"12
"
>
1.2 目标检测
<a
class=
"headerlink"
href=
"#12
"
title=
"Permanent link"
>
#
</a></h3>
<p>
数据集:COCO 2017
</p>
<table>
<thead>
<tr>
<th
align=
"center"
>
Model
</th>
<th
align=
"center"
>
输入尺寸
</th>
<th
align=
"center"
>
Image/GPU
</th>
<th
align=
"center"
>
Box AP
</th>
<th
align=
"center"
>
输入608 Box AP
</th>
<th
align=
"center"
>
输入416 Box AP
</th>
<th
align=
"center"
>
输入320 Box AP
</th>
<th
align=
"center"
>
模型大小(MB)
</th>
<th
align=
"center"
>
下载
</th>
</tr>
</thead>
<tbody>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3 FP32
</td>
<td
align=
"center"
>
608
</td>
<td
align=
"center"
>
8
</td>
<td
align=
"center"
><a
href=
"https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar"
>
29.3
</a></td>
<td
align=
"center"
>
29.3
</td>
<td
align=
"center"
>
29.3
</td>
<td
align=
"center"
>
27.1
</td>
<td
align=
"center"
>
xx
</td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3 FP32
</td>
<td
align=
"center"
>
416
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3 FP32
</td>
<td
align=
"center"
>
320
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3 quant_post
</td>
<td
align=
"center"
>
608
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3 quant_post
</td>
<td
align=
"center"
>
416
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3 quant_post
</td>
<td
align=
"center"
>
320
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3 quant_aware
</td>
<td
align=
"center"
>
608
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3 quant_aware
</td>
<td
align=
"center"
>
416
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
>
8
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3 quant_aware
</td>
<td
align=
"center"
>
320
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
R50-dcn-YOLOv3 FP32
</td>
<td
align=
"center"
>
608
</td>
<td
align=
"center"
></td>
<td
align=
"center"
><a
href=
"https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar"
>
41.4
</a></td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
R50-dcn-YOLOv3 FP32
</td>
<td
align=
"center"
>
416
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
>
8
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
R50-dcn-YOLOv3 FP32
</td>
<td
align=
"center"
>
320
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
R50-dcn-YOLOv3 quant_post
</td>
<td
align=
"center"
>
608
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
R50-dcn-YOLOv3 quant_post
</td>
<td
align=
"center"
>
416
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
>
8
</td>
<td
align=
"center"
>
41.4
</td>
<td
align=
"center"
>
-
</td>
<td
align=
"center"
>
-
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
R50-dcn-YOLOv3 quant_post
</td>
<td
align=
"center"
>
320
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
R50-dcn-YOLOv3 quant_aware
</td>
<td
align=
"center"
>
608
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
R50-dcn-YOLOv3 quant_aware
</td>
<td
align=
"center"
>
416
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
>
8
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
-
</td>
<td
align=
"center"
>
-
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
R50-dcn-YOLOv3 quant_aware
</td>
<td
align=
"center"
>
320
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
>
8
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
-
</td>
<td
align=
"center"
>
-
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
</tbody>
</table>
<h3
id=
"122"
>
1.2.2 目标检测
<a
class=
"headerlink"
href=
"#122"
title=
"Permanent link"
>
#
</a></h3>
<p>
数据集:COCO 2017
</p>
<p>
数据集:WIDER-FACE
</p>
<table>
<thead>
<tr>
<th
align=
"center"
>
Model
</th>
<th
align=
"center"
>
Image/GPU
</th>
<th
align=
"center"
>
输入
608 Box AP
</th>
<th
>
输入416 Box AP
</th>
<th
>
输入320 Box AP
</th>
<th
align=
"center"
>
模型大小(MB)
</th>
<th
align=
"center"
>
输入
尺寸
</th>
<th
align=
"center"
>
Easy/Medium/Hard
</th>
<th
align=
"center"
>
模型大小(MB)
</th>
<th
align=
"center"
>
下载
</th>
</tr>
</thead>
<tbody>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
FP32
</td>
<td
align=
"center"
>
BlazeFace
FP32
</td>
<td
align=
"center"
>
8
</td>
<td
align=
"center"
><a
href=
"https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar"
>
29.3
</a></td>
<td><a
href=
""
>
29.3
</a></td>
<td><a
href=
""
>
27.1
</a></td>
<td
align=
"center"
>
640
</td>
<td
align=
"center"
>
0.915/0.892/0.797
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3 quant_post
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td></td>
<td></td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3 quant_aware
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td></td>
<td></td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
R50-dcn-YOLOv3 FP32
</td>
<td
align=
"center"
></td>
<td
align=
"center"
><a
href=
"https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar"
>
41.4
</a></td>
<td></td>
<td></td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
R50-dcn-YOLOv3 quant_post
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td></td>
<td></td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
R50-dcn-YOLOv3 quant_aware
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td></td>
<td></td>
<td
align=
"center"
></td>
</tr>
</tbody>
</table>
<h3
id=
"_1"
><a
class=
"headerlink"
href=
"#_1"
title=
"Permanent link"
>
#
</a></h3>
<p>
数据集:WIDER-FACE
</p>
<p>
评价指标:Easy/Medium/Hard mAP
</p>
<table>
<thead>
<tr>
<th
align=
"center"
>
Model
</th>
<th
align=
"center"
>
输入尺寸
</th>
<th
align=
"center"
>
Image/GPU
</th>
<th
align=
"center"
>
FP32
</th>
<th
align=
"center"
>
离线量化
</th>
<th
align=
"center"
>
量化训练
</th>
<td
align=
"center"
>
BlazeFace quant_post
</td>
<td
align=
"center"
>
8
</td>
<td
align=
"center"
>
640
</td>
<td
align=
"center"
>
xx/xx/xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
</thead>
<tbody>
<tr>
<td
align=
"center"
>
BlazeFace
</td>
<td
align=
"center"
>
640
</td>
<td
align=
"center"
>
BlazeFace quant_aware
</td>
<td
align=
"center"
>
8
</td>
<td
align=
"center"
><a
href=
"https://paddlemodels.bj.bcebos.com/object_detection/blazeface_original.tar"
>
0.915/0.892/0.797
</a></td>
<td
align=
"center"
><a
href=
""
>
xx/xx/xx
</a></td>
<td
align=
"center"
><a
href=
""
>
xx/xx/xx
</a></td>
<td
align=
"center"
>
640
</td>
<td
align=
"center"
>
xx/xx/xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
BlazeFace-Lite
</td>
<td
align=
"center"
>
BlazeFace-Lite FP32
</td>
<td
align=
"center"
>
8
</td>
<td
align=
"center"
>
640
</td>
<td
align=
"center"
></td>
<td
align=
"center"
><a
href=
"https://paddlemodels.bj.bcebos.com/object_detection/blazeface_lite.tar"
>
0.909/0.885/0.781
</a></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
>
0.909/0.885/0.781
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
BlazeFace-NAS
</td>
<td
align=
"center"
>
BlazeFace-Lite quant_post
</td>
<td
align=
"center"
>
8
</td>
<td
align=
"center"
>
640
</td>
<td
align=
"center"
></td>
<td
align=
"center"
><a
href=
"https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas.tar"
>
0.837/0.807/0.658
</a></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
>
xx/xx/xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
</tbody>
</table>
<p>
量化前后,模型大小的变化对比如下:
</p>
<table>
<thead>
<tr>
<th
align=
"center"
>
Model
</th>
<th
align=
"center"
>
FP32
</th>
<th
align=
"center"
>
离线量化
</th>
<th
align=
"center"
>
量化训练
</th>
<td
align=
"center"
>
BlazeFace-Lite quant_aware
</td>
<td
align=
"center"
>
8
</td>
<td
align=
"center"
>
640
</td>
<td
align=
"center"
>
xx/xx/xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
</thead>
<tbody>
<tr>
<td
align=
"center"
>
BlazeFace
</td>
<td
align=
"center"
>
xxM
</td>
<td
align=
"center"
>
xxM
</td>
<td
align=
"center"
>
xxM
</td>
<td
align=
"center"
>
BlazeFace-NAS FP32
</td>
<td
align=
"center"
>
8
</td>
<td
align=
"center"
>
640
</td>
<td
align=
"center"
>
0.837/0.807/0.658
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
BlazeFace-Lite
</td>
<td
align=
"center"
>
xxM
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
>
BlazeFace-NAS quant_post
</td>
<td
align=
"center"
>
8
</td>
<td
align=
"center"
>
640
</td>
<td
align=
"center"
>
xx/xx/xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
BlazeFace-NAS
</td>
<td
align=
"center"
>
xxM
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
>
BlazeFace-NAS quant_aware
</td>
<td
align=
"center"
>
8
</td>
<td
align=
"center"
>
640
</td>
<td
align=
"center"
>
xx/xx/xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
</tbody>
</table>
<h3
id=
"_
2"
><a
class=
"headerlink"
href=
"#_2
"
title=
"Permanent link"
>
#
</a></h3>
<h3
id=
"_
1"
><a
class=
"headerlink"
href=
"#_1
"
title=
"Permanent link"
>
#
</a></h3>
<h3
id=
"13"
>
1.3 图像分割
<a
class=
"headerlink"
href=
"#13"
title=
"Permanent link"
>
#
</a></h3>
<p>
数据集:Cityscapes
</p>
<table>
<thead>
<tr>
<th
align=
"center"
>
Model
</th>
<th
align=
"center"
>
FP32
mIoU
</th>
<th
align=
"center"
>
离线量化 mIoU
</th>
<th
align=
"center"
>
量化训练 mIoU
</th>
<th
align=
"center"
>
mIoU
</th>
<th
align=
"center"
>
模型大小(MB)
</th>
<th
align=
"center"
>
下载
</th>
</tr>
</thead>
<tbody>
<tr>
<td
align=
"center"
>
DeepLabv3+/MobileNetv1
</td>
<td
align=
"center"
>
<a
href=
""
>
63.26
</a>
</td>
<td
align=
"center"
>
<a
href=
""
>
xx
</a>
</td>
<td
align=
"center"
><a
href=
""
>
xx
</a></td>
<td
align=
"center"
>
63.26
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
DeepLabv3+/MobileNetv
2
</td>
<td
align=
"center"
>
<a
href=
"https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz"
>
69.81
</a>
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
>
DeepLabv3+/MobileNetv
1 quant_post
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><
a
href=
""
>
下载链接
</a><
/td>
</tr>
</tbody>
</table>
<p>
量化前后,模型大小的变化对比如下:
</p>
<table>
<thead>
<tr>
<t
h
align=
"center"
>
Model
</th
>
<t
h
align=
"center"
>
FP32
</th
>
<t
h
align=
"center"
>
离线量化
</th
>
<t
h
align=
"center"
>
量化训练
</th
>
<t
d
align=
"center"
>
DeepLabv3+/MobileNetv1 quant_aware
</td
>
<t
d
align=
"center"
>
xx
</td
>
<t
d
align=
"center"
>
xx
</td
>
<t
d
align=
"center"
><a
href=
""
>
下载链接
</a></td
>
</tr>
</thead>
<tbody>
<tr>
<td
align=
"center"
>
DeepLabv3+/MobileNetv
1
</td>
<td
align=
"center"
>
xxM
</td>
<td
align=
"center"
>
xx
M
</td>
<td
align=
"center"
>
xxM
</td>
<td
align=
"center"
>
DeepLabv3+/MobileNetv
2
</td>
<td
align=
"center"
>
69.81
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
<a
href=
""
>
下载链接
</a>
</td>
</tr>
<tr>
<td
align=
"center"
>
DeepLabv3+/MobileNetv2
</td>
<td
align=
"center"
>
xxM
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
>
DeepLabv3+/MobileNetv2 quant_post
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
DeepLabv3+/MobileNetv2 quant_aware
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
</tbody>
</table>
<h3
id=
"_
3"
><a
class=
"headerlink"
href=
"#_3
"
title=
"Permanent link"
>
#
</a></h3>
<h3
id=
"_
2"
><a
class=
"headerlink"
href=
"#_2
"
title=
"Permanent link"
>
#
</a></h3>
<h2
id=
"2"
>
2. 剪枝
<a
class=
"headerlink"
href=
"#2"
title=
"Permanent link"
>
#
</a></h2>
<h3
id=
"21"
>
2.1 图像分类
<a
class=
"headerlink"
href=
"#21"
title=
"Permanent link"
>
#
</a></h3>
<p>
数据集:ImageNet1000类
</p>
...
...
@@ -605,83 +493,78 @@
<tr>
<th
align=
"center"
>
Model
</th>
<th
align=
"center"
>
Top-1/Top-5
</th>
<th
align=
"center"
>
模型大小(MB)
</th>
<th
align=
"center"
>
FLOPs
</th>
<th
align=
"center"
>
下载
</th>
</tr>
</thead>
<tbody>
<tr>
<td
align=
"center"
>
MobileNetV1
</td>
<td
align=
"center"
><a
href=
"http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar"
>
70.99%/89.68%
</a></td>
<td
align=
"center"
>
70.99%/89.68%
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNetV1 uniform -50%
</td>
<td
align=
"center"
></td>
<td
align=
"center"
>
xx%/xx%
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNetV1 sensitive -xx%
</td>
<td
align=
"center"
></td>
<td
align=
"center"
>
xx%/xx%
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNetV2
</td>
<td
align=
"center"
><a
href=
"https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar"
>
72.15%/90.65%
</a></td>
<td
align=
"center"
>
72.15%/90.65%
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNetV2 uniform -50%
</td>
<td
align=
"center"
></td>
<td
align=
"center"
>
xx%/xx%
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNetV2 sensitive -xx%
</td>
<td
align=
"center"
></td>
<td
align=
"center"
>
xx%/xx%
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
ResNet34
</td>
<td
align=
"center"
><a
href=
"https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar"
>
74.57%/92.14%
</a></td>
<td
align=
"center"
>
74.57%/92.14%
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
ResNet34 uniform -50%
</td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
ResNet34 auto -50%
</td>
<td
align=
"center"
></td>
</tr>
</tbody>
</table>
<p>
剪枝前后,模型大小和计算量的变化对比如下:
</p>
<table>
<thead>
<tr>
<th
align=
"center"
>
Model
</th>
<th
align=
"center"
>
baseline FLOPs
</th>
<th
align=
"center"
>
baseline size
</th>
<th
align=
"center"
>
剪枝后 FlOPs
</th>
<th
align=
"center"
>
剪枝后 size
</th>
</tr>
</thead>
<tbody>
<tr>
<td
align=
"center"
>
MobileNetV1
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx%/xx%
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNetV2
</td>
<td
align=
"center"
>
ResNet34 auto -50%
</td>
<td
align=
"center"
>
xx%/xx%
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
ResNet34
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
</tbody>
</table>
<h3
id=
"_
4"
><a
class=
"headerlink"
href=
"#_4
"
title=
"Permanent link"
>
#
</a></h3>
<h3
id=
"_
3"
><a
class=
"headerlink"
href=
"#_3
"
title=
"Permanent link"
>
#
</a></h3>
<h3
id=
"22"
>
2.2 目标检测
<a
class=
"headerlink"
href=
"#22"
title=
"Permanent link"
>
#
</a></h3>
<p>
数据集:Pasacl VOC
&
COCO 2017
</p>
<table>
...
...
@@ -689,119 +572,81 @@
<tr>
<th
align=
"center"
>
Model
</th>
<th
align=
"center"
>
数据集
</th>
<th
align=
"center"
>
输入尺寸
</th>
<th
align=
"center"
>
Image/GPU
</th>
<th
align=
"center"
>
baseline mAP
</th>
<th
align=
"center"
>
敏感度剪枝 mAP
</th>
<th
align=
"center"
>
输入608 mAP
</th>
<th
align=
"center"
>
输入416 mAP
</th>
<th
align=
"center"
>
输入320 mAP
</th>
<th
align=
"center"
>
模型大小(MB)
</th>
<th
align=
"center"
>
FLOPs
</th>
<th
align=
"center"
>
下载
</th>
</tr>
</thead>
<tbody>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
</td>
<td
align=
"center"
>
Pasacl VOC
</td>
<td
align=
"center"
>
608
</td>
<td
align=
"center"
>
8
</td>
<td
align=
"center"
><a
href=
""
>
76.2
</a></td>
<td
align=
"center"
><a
href=
""
>
77.59
</a>
(-50%)
</td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
</td>
<td
align=
"center"
>
Pasacl VOC
</td>
<td
align=
"center"
>
416
</td>
<td
align=
"center"
></td>
<td
align=
"center"
><a
href=
""
>
76.7
</a></td>
<td
align=
"center"
><a
href=
""
>
xx
</a></td>
<td
align=
"center"
>
76.2
</td>
<td
align=
"center"
>
76.7
</td>
<td
align=
"center"
>
75.3
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
</td>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
prune xx%
</td>
<td
align=
"center"
>
Pasacl VOC
</td>
<td
align=
"center"
>
320
</td>
<td
align=
"center"
></td>
<td
align=
"center"
><a
href=
""
>
75.2
</a></td>
<td
align=
"center"
><a
href=
""
>
xx
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
</td>
<td
align=
"center"
>
COCO
</td>
<td
align=
"center"
>
608
</td>
<td
align=
"center"
></td>
<td
align=
"center"
><a
href=
"https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar"
>
29.3
</a></td>
<td
align=
"center"
><a
href=
""
>
29.56
</a>
(-20%)
</td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
</td>
<td
align=
"center"
>
COCO
</td>
<td
align=
"center"
>
416
</td>
<td
align=
"center"
></td>
<td
align=
"center"
><a
href=
""
>
29.3
</a></td>
<td
align=
"center"
><a
href=
""
>
xx
</a></td>
<td
align=
"center"
>
8
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
</td>
<td
align=
"center"
>
COCO
</td>
<td
align=
"center"
>
320
</td>
<td
align=
"center"
></td>
<td
align=
"center"
><a
href=
""
>
27.1
</a></td>
<td
align=
"center"
><a
href=
""
>
xx
</a></td>
</tr>
<tr>
<td
align=
"center"
>
R50-dcn-YOLOv3
</td>
<td
align=
"center"
>
COCO
</td>
<td
align=
"center"
>
608
</td>
<td
align=
"center"
></td>
<td
align=
"center"
><a
href=
"https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar"
>
41.4
</a></td>
<td
align=
"center"
><a
href=
""
>
37.8
</a>
(-30%)
</td>
<td
align=
"center"
>
8
</td>
<td
align=
"center"
>
29.3
</td>
<td
align=
"center"
>
29.3
</td>
<td
align=
"center"
>
27.1
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
R50-dcn-YOLOv3
</td>
<td
align=
"center"
>
MobileNet-V1-YOLOv3 prune xx%
</td>
<td
align=
"center"
>
COCO
</td>
<td
align=
"center"
>
416
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
>
8
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
R50-dcn-YOLOv3
</td>
<td
align=
"center"
>
COCO
</td>
<td
align=
"center"
>
320
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
</tr>
</tbody>
</table>
<p>
剪枝前后,模型大小和计算量的变化对比如下:
</p>
<table>
<thead>
<tr>
<th
align=
"center"
>
Model
</th>
<th
align=
"center"
>
baseline FLOPs
</th>
<th
align=
"center"
>
baseline size
</th>
<th
align=
"center"
>
剪枝后 FlOPs
</th>
<th
align=
"center"
>
剪枝后 size
</th>
</tr>
</thead>
<tbody>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3-VOC
</td>
<td
align=
"center"
>
8
</td>
<td
align=
"center"
>
41.4
</td>
<td
align=
"center"
>
-
</td>
<td
align=
"center"
>
-
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xxM
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xxM
</td>
<td
align=
"center"
>
<a
href=
""
>
下载链接
</a>
</td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3-COCO
</td>
<td
align=
"center"
>
R50-dcn-YOLOv3 prune xx%
</td>
<td
align=
"center"
>
COCO
</td>
<td
align=
"center"
>
8
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
-
</td>
<td
align=
"center"
>
-
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
R50-dcn-YOLOv3-COCO
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
</tbody>
</table>
...
...
@@ -811,36 +656,26 @@
<thead>
<tr>
<th
align=
"center"
>
Model
</th>
<th
align=
"center"
>
Baseline mIoU
</th>
<th
align=
"center"
>
xx剪枝 mIoU
</th>
<th
align=
"center"
>
mIoU
</th>
<th
align=
"center"
>
模型大小(MB)
</th>
<th
align=
"center"
>
FLOPs
</th>
<th
align=
"center"
>
下载
</th>
</tr>
</thead>
<tbody>
<tr>
<td
align=
"center"
>
DeepLabv3+/MobileNetv2
</td>
<td
align=
"center"
><a
href=
"https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz"
>
69.81
</a></td>
<td
align=
"center"
><a
href=
""
>
xx
</a></td>
</tr>
</tbody>
</table>
<p>
剪枝前后,模型大小和计算量的变化对比如下:
</p>
<table>
<thead>
<tr>
<th
align=
"center"
>
Model
</th>
<th
align=
"center"
>
baseline FLOPs
</th>
<th
align=
"center"
>
baseline size
</th>
<th
align=
"center"
>
剪枝后 FlOPs
</th>
<th
align=
"center"
>
剪枝后 size
</th>
<td
align=
"center"
>
69.81
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
</thead>
<tbody>
<tr>
<td
align=
"center"
>
DeepLabv3+/MobileNetv2
</td>
<td
align=
"center"
>
DeepLabv3+/MobileNetv2 prune xx%
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xxM
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xxM
</td>
<td
align=
"center"
>
<a
href=
""
>
下载链接
</a>
</td>
</tr>
</tbody>
</table>
...
...
@@ -853,24 +688,39 @@
<tr>
<th
align=
"center"
>
Model
</th>
<th
align=
"center"
>
baseline
</th>
<th
align=
"center"
>
蒸馏后
</th>
<th
align=
"center"
>
下载
</th>
</tr>
</thead>
<tbody>
<tr>
<td
align=
"center"
>
MobileNetV1
</td>
<td
align=
"center"
><a
href=
"http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar"
>
70.99%/89.68%
</a></td>
<td
align=
"center"
><a
href=
""
>
72.79%/90.69%
</a>
(teacher: ResNet50_vd
<sup><a
href=
"#trans1"
>
1
</a></sup>
)
</td>
<td
align=
"center"
>
70.99%/89.68%
</td>
<td
align=
"center"
><a
href=
"http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar"
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNetV1 distilled (teacher: ResNet50_vd
<sup><a
href=
"#trans1"
>
1
</a></sup>
)
</td>
<td
align=
"center"
>
72.79%/90.69%
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNetV2
</td>
<td
align=
"center"
><a
href=
"https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar"
>
72.15%/90.65%
</a></td>
<td
align=
"center"
><a
href=
""
>
74.30%/91.52%
</a>
(teacher: ResNet50_vd)
</td>
<td
align=
"center"
>
72.15%/90.65%
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNetV2 distilled (teacher: ResNet50_vd)
</td>
<td
align=
"center"
>
74.30%/91.52%
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
ResNet50
</td>
<td
align=
"center"
><a
href=
"http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar"
>
76.50%/93.00%
</a></td>
<td
align=
"center"
><a
href=
""
>
77.40%/93.48%
</a>
(teacher: ResNet101
<sup><a
href=
"#trans2"
>
2
</a></sup>
)
</td>
<td
align=
"center"
>
76.50%/93.00%
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
ResNet50 distilled (teacher: ResNet101
<sup><a
href=
"#trans2"
>
2
</a></sup>
)
</td>
<td
align=
"center"
>
77.40%/93.48%
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
</tbody>
</table>
...
...
@@ -887,60 +737,49 @@
<tr>
<th
align=
"center"
>
Model
</th>
<th
align=
"center"
>
数据集
</th>
<th
align=
"center"
>
输入尺寸
</th>
<th
align=
"center"
>
Image/GPU
</th>
<th
align=
"center"
>
baseline
</th>
<th
align=
"center"
>
蒸馏后 mAP
</th>
<th
align=
"center"
>
输入640 mAP
</th>
<th
align=
"center"
>
输入416 mAP
</th>
<th
align=
"center"
>
输入320 mAP
</th>
<th
align=
"center"
>
下载链接
</th>
</tr>
</thead>
<tbody>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
</td>
<td
align=
"center"
>
Pasacl VOC
</td>
<td
align=
"center"
>
640
</td>
<td
align=
"center"
>
16
</td>
<td
align=
"center"
><a
href=
""
>
76.2
</a></td>
<td
align=
"center"
><a
href=
""
>
79.0
</a>
(teacher: ResNet34-YOLOv3-VOC
<sup><a
href=
"#trans3"
>
3
</a></sup>
)
</td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
</td>
<td
align=
"center"
>
Pasacl VOC
</td>
<td
align=
"center"
>
416
</td>
<td
align=
"center"
></td>
<td
align=
"center"
><a
href=
""
>
76.7
</a></td>
<td
align=
"center"
><a
href=
""
>
78.2
</a></td>
<td
align=
"center"
>
76.2
</td>
<td
align=
"center"
>
76.7
</td>
<td
align=
"center"
>
75.3
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
</td>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
distilled (teacher: ResNet34-YOLOv3-VOC
<sup><a
href=
"#trans3"
>
3
</a></sup>
)
</td>
<td
align=
"center"
>
Pasacl VOC
</td>
<td
align=
"center"
>
320
</td>
<td
align=
"center"
></td>
<td
align=
"center"
><a
href=
""
>
75.2
</a></td>
<td
align=
"center"
><a
href=
""
>
75.5
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
</td>
<td
align=
"center"
>
COCO
</td>
<td
align=
"center"
>
640
</td>
<td
align=
"center"
></td>
<td
align=
"center"
><a
href=
"https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar"
>
29.3
</a></td>
<td
align=
"center"
><a
href=
""
>
31.0
</a>
(teacher: ResNet34-YOLOv3-COCO
<sup><a
href=
"#trans4"
>
4
</a></sup>
)
</td>
<td
align=
"center"
>
16
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
</td>
<td
align=
"center"
>
COCO
</td>
<td
align=
"center"
>
416
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
>
16
</td>
<td
align=
"center"
>
29.3
</td>
<td
align=
"center"
>
29.3
</td>
<td
align=
"center"
>
27.1
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
</td>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
distilled (teacher: ResNet34-YOLOv3-COCO
<sup><a
href=
"#trans4"
>
4
</a></sup>
)
</td>
<td
align=
"center"
>
COCO
</td>
<td
align=
"center"
>
320
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
>
16
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
>
xx
</td>
<td
align=
"center"
><a
href=
""
>
下载链接
</a></td>
</tr>
</tbody>
</table>
...
...
search/search_index.json
浏览文件 @
21858a78
因为 它太大了无法显示 source diff 。你可以改为
查看blob
。
sitemap.xml.gz
浏览文件 @
21858a78
无法预览此类型文件
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录