Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
1d07d799
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
大约 1 年 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1d07d799
编写于
5月 14, 2020
作者:
W
whs
提交者:
GitHub
5月 14, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix pruning walker. (#277)
上级
9d8730f6
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
106 addition
and
1 deletion
+106
-1
paddleslim/prune/prune_walker.py
paddleslim/prune/prune_walker.py
+101
-1
paddleslim/prune/pruner.py
paddleslim/prune/pruner.py
+5
-0
未找到文件。
paddleslim/prune/prune_walker.py
浏览文件 @
1d07d799
...
@@ -23,6 +23,8 @@ _logger = get_logger(__name__, level=logging.INFO)
...
@@ -23,6 +23,8 @@ _logger = get_logger(__name__, level=logging.INFO)
PRUNE_WORKER
=
Registry
(
'prune_worker'
)
PRUNE_WORKER
=
Registry
(
'prune_worker'
)
SKIP_OPS
=
[
"conditional_block"
]
class
PruneWorker
(
object
):
class
PruneWorker
(
object
):
def
__init__
(
self
,
op
,
pruned_params
=
[],
visited
=
{}):
def
__init__
(
self
,
op
,
pruned_params
=
[],
visited
=
{}):
...
@@ -72,6 +74,9 @@ class PruneWorker(object):
...
@@ -72,6 +74,9 @@ class PruneWorker(object):
self
.
visited
=
visited
self
.
visited
=
visited
cls
=
PRUNE_WORKER
.
get
(
op
.
type
())
cls
=
PRUNE_WORKER
.
get
(
op
.
type
())
if
cls
is
None
:
if
cls
is
None
:
if
op
.
type
()
in
SKIP_OPS
:
_logger
.
warn
(
"Skip operator [{}]"
.
format
(
op
.
type
()))
return
_logger
.
warn
(
_logger
.
warn
(
"{} op will be pruned by default walker to keep the shapes of input and output being same because its walker is not registered."
.
"{} op will be pruned by default walker to keep the shapes of input and output being same because its walker is not registered."
.
format
(
op
.
type
()))
format
(
op
.
type
()))
...
@@ -149,6 +154,71 @@ class conv2d(PruneWorker):
...
@@ -149,6 +154,71 @@ class conv2d(PruneWorker):
self
.
_prune_op
(
op
,
output_var
,
channel_axis
,
pruned_idx
)
self
.
_prune_op
(
op
,
output_var
,
channel_axis
,
pruned_idx
)
@
PRUNE_WORKER
.
register
class
conv2d_transpose
(
PruneWorker
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
=
{}):
super
(
conv2d_transpose
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
def
_prune
(
self
,
var
,
pruned_axis
,
pruned_idx
):
data_format
=
self
.
op
.
attr
(
"data_format"
)
channel_axis
=
1
if
data_format
==
"NHWC"
:
channel_axis
=
3
if
var
in
self
.
op
.
inputs
(
"Input"
):
assert
pruned_axis
==
channel_axis
,
"The Input of conv2d can only be pruned at channel axis, but got {}; var: {}"
.
format
(
pruned_axis
,
var
.
name
())
filter_var
=
self
.
op
.
inputs
(
"Filter"
)[
0
]
self
.
_visit
(
filter_var
,
0
)
self
.
pruned_params
.
append
((
filter_var
,
0
,
pruned_idx
))
for
op
in
filter_var
.
outputs
():
self
.
_prune_op
(
op
,
filter_var
,
0
,
pruned_idx
)
elif
var
in
self
.
op
.
inputs
(
"Filter"
):
assert
pruned_axis
in
[
0
,
1
]
self
.
pruned_params
.
append
((
var
,
pruned_axis
,
pruned_idx
))
for
op
in
var
.
outputs
():
self
.
_prune_op
(
op
,
var
,
pruned_axis
,
pruned_idx
)
if
pruned_axis
==
1
:
if
len
(
self
.
op
.
inputs
(
"Bias"
))
>
0
:
self
.
pruned_params
.
append
(
(
self
.
op
.
inputs
(
"Bias"
),
channel_axis
,
pruned_idx
))
output_var
=
self
.
op
.
outputs
(
"Output"
)[
0
]
self
.
_visit
(
output_var
,
channel_axis
)
next_ops
=
output_var
.
outputs
()
for
op
in
next_ops
:
self
.
_prune_op
(
op
,
output_var
,
channel_axis
,
pruned_idx
)
elif
pruned_axis
==
0
:
input_var
=
self
.
op
.
inputs
(
"Input"
)[
0
]
self
.
_visit
(
input_var
,
channel_axis
)
pre_ops
=
input_var
.
inputs
()
for
op
in
pre_ops
:
self
.
_prune_op
(
op
,
input_var
,
channel_axis
,
pruned_idx
)
elif
var
in
self
.
op
.
outputs
(
"Output"
):
assert
pruned_axis
==
channel_axis
,
"pruned_axis: {}; var: {}"
.
format
(
pruned_axis
,
var
.
name
())
filter_var
=
self
.
op
.
inputs
(
"Filter"
)[
0
]
self
.
_visit
(
filter_var
,
1
)
self
.
pruned_params
.
append
((
filter_var
,
1
,
pruned_idx
))
for
op
in
filter_var
.
outputs
():
self
.
_prune_op
(
op
,
filter_var
,
1
,
pruned_idx
)
if
len
(
self
.
op
.
inputs
(
"Bias"
))
>
0
:
self
.
pruned_params
.
append
(
(
self
.
op
.
inputs
(
"Bias"
)[
0
],
channel_axis
,
pruned_idx
))
output_var
=
self
.
op
.
outputs
(
"Output"
)[
0
]
next_ops
=
output_var
.
outputs
()
for
op
in
next_ops
:
self
.
_prune_op
(
op
,
output_var
,
channel_axis
,
pruned_idx
)
@
PRUNE_WORKER
.
register
@
PRUNE_WORKER
.
register
class
batch_norm
(
PruneWorker
):
class
batch_norm
(
PruneWorker
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
...
@@ -267,7 +337,7 @@ class default_walker(PruneWorker):
...
@@ -267,7 +337,7 @@ class default_walker(PruneWorker):
def
_prune
(
self
,
var
,
pruned_axis
,
pruned_idx
):
def
_prune
(
self
,
var
,
pruned_axis
,
pruned_idx
):
if
var
in
self
.
op
.
all_outputs
():
if
var
in
self
.
op
.
all_outputs
():
for
in_var
in
self
.
op
.
inputs
():
for
in_var
in
self
.
op
.
all_
inputs
():
if
len
(
in_var
.
shape
())
==
len
(
var
.
shape
()):
if
len
(
in_var
.
shape
())
==
len
(
var
.
shape
()):
pre_ops
=
in_var
.
inputs
()
pre_ops
=
in_var
.
inputs
()
for
op
in
pre_ops
:
for
op
in
pre_ops
:
...
@@ -549,3 +619,33 @@ class adam(PruneWorker):
...
@@ -549,3 +619,33 @@ class adam(PruneWorker):
self
.
pruned_params
.
append
((
moment1_var
,
pruned_axis
,
pruned_idx
))
self
.
pruned_params
.
append
((
moment1_var
,
pruned_axis
,
pruned_idx
))
moment2_var
=
self
.
op
.
inputs
(
"Moment2"
)[
0
]
moment2_var
=
self
.
op
.
inputs
(
"Moment2"
)[
0
]
self
.
pruned_params
.
append
((
moment2_var
,
pruned_axis
,
pruned_idx
))
self
.
pruned_params
.
append
((
moment2_var
,
pruned_axis
,
pruned_idx
))
@
PRUNE_WORKER
.
register
class
affine_channel
(
PruneWorker
):
def
__init__
(
self
,
op
,
pruned_params
,
visited
):
super
(
affine_channel
,
self
).
__init__
(
op
,
pruned_params
,
visited
)
def
_prune
(
self
,
var
,
pruned_axis
,
pruned_idx
):
if
(
var
not
in
self
.
op
.
outputs
(
"Out"
))
and
(
var
not
in
self
.
op
.
inputs
(
"X"
)):
return
if
var
in
self
.
op
.
outputs
(
"Out"
):
in_var
=
self
.
op
.
inputs
(
"X"
)[
0
]
self
.
_visit
(
in_var
,
pruned_axis
)
pre_ops
=
in_var
.
inputs
()
for
op
in
pre_ops
:
self
.
_prune_op
(
op
,
in_var
,
pruned_axis
,
pruned_idx
)
for
param
in
[
"Scale"
,
"Bias"
]:
param_var
=
self
.
op
.
inputs
(
param
)[
0
]
for
op
in
param_var
.
outputs
():
self
.
_prune_op
(
op
,
param_var
,
0
,
pruned_idx
)
self
.
pruned_params
.
append
((
param_var
,
0
,
pruned_idx
))
out_var
=
self
.
op
.
outputs
(
"Out"
)[
0
]
self
.
_visit
(
out_var
,
pruned_axis
)
next_ops
=
out_var
.
outputs
()
for
op
in
next_ops
:
self
.
_prune_op
(
op
,
out_var
,
pruned_axis
,
pruned_idx
)
paddleslim/prune/pruner.py
浏览文件 @
1d07d799
...
@@ -90,6 +90,11 @@ class Pruner():
...
@@ -90,6 +90,11 @@ class Pruner():
visited
=
{}
visited
=
{}
pruned_params
=
[]
pruned_params
=
[]
for
param
,
ratio
in
zip
(
params
,
ratios
):
for
param
,
ratio
in
zip
(
params
,
ratios
):
if
graph
.
var
(
param
)
is
None
:
_logger
.
warn
(
"Variable[{}] to be pruned is not in current graph."
.
format
(
param
))
continue
group
=
collect_convs
([
param
],
graph
,
visited
)[
0
]
# [(name, axis)]
group
=
collect_convs
([
param
],
graph
,
visited
)[
0
]
# [(name, axis)]
if
group
is
None
or
len
(
group
)
==
0
:
if
group
is
None
or
len
(
group
)
==
0
:
continue
continue
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录