Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
1997011c
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
1 年多 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1997011c
编写于
6月 03, 2023
作者:
W
whs
提交者:
GitHub
6月 03, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine the checking method in qat unittest (#1758)
上级
2de33a0a
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
61 addition
and
40 deletion
+61
-40
tests/test_quant_aware.py
tests/test_quant_aware.py
+61
-40
未找到文件。
tests/test_quant_aware.py
浏览文件 @
1997011c
...
@@ -13,6 +13,7 @@
...
@@ -13,6 +13,7 @@
# limitations under the License.
# limitations under the License.
import
sys
import
sys
from
typing
import
List
sys
.
path
.
append
(
"../"
)
sys
.
path
.
append
(
"../"
)
import
unittest
import
unittest
import
paddle
import
paddle
...
@@ -43,8 +44,8 @@ class TestQuantAwareCase(StaticCase):
...
@@ -43,8 +44,8 @@ class TestQuantAwareCase(StaticCase):
main_prog
=
paddle
.
static
.
default_main_program
()
main_prog
=
paddle
.
static
.
default_main_program
()
val_prog
=
paddle
.
static
.
default_main_program
().
clone
(
for_test
=
True
)
val_prog
=
paddle
.
static
.
default_main_program
().
clone
(
for_test
=
True
)
place
=
paddle
.
CUDAPlace
(
0
)
if
paddle
.
is_compiled_with_cuda
(
place
=
paddle
.
CUDAPlace
(
)
else
paddle
.
CPUPlace
()
0
)
if
paddle
.
is_compiled_with_cuda
(
)
else
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
paddle
.
static
.
default_startup_program
())
exe
.
run
(
paddle
.
static
.
default_startup_program
())
...
@@ -104,67 +105,87 @@ class TestQuantAwareCase(StaticCase):
...
@@ -104,67 +105,87 @@ class TestQuantAwareCase(StaticCase):
train
(
main_prog
)
train
(
main_prog
)
top1_1
,
top5_1
=
test
(
main_prog
)
top1_1
,
top5_1
=
test
(
main_prog
)
ops_with_weights
=
[
'depthwise_conv2d'
,
'mul'
,
'conv2d'
,
]
ops_without_weights
=
[
'relu'
,
]
config
=
{
config
=
{
'weight_quantize_type'
:
'channel_wise_abs_max'
,
'weight_quantize_type'
:
'channel_wise_abs_max'
,
'activation_quantize_type'
:
'moving_average_abs_max'
,
'activation_quantize_type'
:
'moving_average_abs_max'
,
'quantize_op_types'
:
[
'depthwise_conv2d'
,
'mul'
,
'conv2d'
]
,
'quantize_op_types'
:
ops_with_weights
+
ops_without_weights
,
}
}
quant_train_prog
=
quant_aware
(
main_prog
,
place
,
config
,
for_test
=
False
)
quant_train_prog
=
quant_aware
(
main_prog
,
place
,
config
,
for_test
=
False
)
quant_eval_prog
=
quant_aware
(
val_prog
,
place
,
config
,
for_test
=
True
)
quant_eval_prog
=
quant_aware
(
val_prog
,
place
,
config
,
for_test
=
True
)
op_nums_1
,
quant_op_nums_1
=
self
.
get_op_number
(
quant_eval_prog
)
# test quant_aware op numbers
# Step1: check the quantizers count in qat graph
self
.
assertTrue
(
op_nums_1
*
2
==
quant_op_nums_1
)
quantizers_count_in_qat
=
self
.
count_op
(
quant_eval_prog
,
[
'quantize_linear'
])
ops_with_weights_count
=
self
.
count_op
(
quant_eval_prog
,
ops_with_weights
)
ops_without_weights_count
=
self
.
count_op
(
quant_eval_prog
,
ops_without_weights
)
self
.
assertEqual
(
ops_with_weights_count
*
2
+
ops_without_weights_count
,
quantizers_count_in_qat
)
with
paddle
.
static
.
program_guard
(
quant_eval_prog
):
paddle
.
static
.
save_inference_model
(
"./models/mobilenet_qat"
,
[
image
,
label
],
[
avg_cost
,
acc_top1
,
acc_top5
],
exe
)
train
(
quant_train_prog
)
train
(
quant_train_prog
)
convert_eval_prog
=
convert
(
quant_eval_prog
,
place
,
config
)
convert_eval_prog
=
convert
(
quant_eval_prog
,
place
,
config
)
with
paddle
.
static
.
program_guard
(
convert_eval_prog
):
paddle
.
static
.
save_inference_model
(
"./models/mobilenet_onnx"
,
[
image
,
label
],
[
avg_cost
,
acc_top1
,
acc_top5
],
exe
)
top1_2
,
top5_2
=
test
(
convert_eval_prog
)
top1_2
,
top5_2
=
test
(
convert_eval_prog
)
# values before quantization and after quantization should be close
# values before quantization and after quantization should be close
print
(
"before quantization: top1: {}, top5: {}"
.
format
(
top1_1
,
top5_1
))
print
(
"before quantization: top1: {}, top5: {}"
.
format
(
top1_1
,
top5_1
))
print
(
"after quantization: top1: {}, top5: {}"
.
format
(
top1_2
,
top5_2
))
print
(
"after quantization: top1: {}, top5: {}"
.
format
(
top1_2
,
top5_2
))
convert_op_nums_1
,
convert_quant_op_nums_1
=
self
.
get_convert_op_number
(
# Step2: check the quantizers count in onnx graph
convert_eval_prog
)
quantizers_count
=
self
.
count_op
(
convert_eval_prog
,
[
'quantize_linear'
])
# test convert op numbers
observers_count
=
self
.
count_op
(
quant_eval_prog
,
self
.
assertTrue
(
convert_op_nums_1
+
25
==
convert_quant_op_nums_1
)
[
'moving_average_abs_max_scale'
])
self
.
assertEqual
(
quantizers_count
,
ops_with_weights_count
+
ops_without_weights_count
+
observers_count
)
# Step3: check the quantization skipping
config
[
'not_quant_pattern'
]
=
[
'last_fc'
]
config
[
'not_quant_pattern'
]
=
[
'last_fc'
]
quant_prog_2
=
quant_aware
(
skip_quant_prog
=
quant_aware
(
main_prog
,
place
,
config
=
config
,
for_test
=
True
)
main_prog
,
place
,
config
=
config
,
for_test
=
True
)
op_nums_2
,
quant_op_nums_2
=
self
.
get_op_number
(
quant_prog_2
)
skip_quantizers_count_in_qat
=
self
.
count_op
(
skip_quant_prog
,
convert_prog_2
=
convert
(
quant_prog_2
,
place
,
config
=
config
)
[
'quantize_linear'
])
convert_op_nums_2
,
convert_quant_op_nums_2
=
self
.
get_convert_op_number
(
skip_ops_with_weights_count
=
self
.
count_op
(
skip_quant_prog
,
convert_prog_2
)
ops_with_weights
)
skip_ops_without_weights_count
=
self
.
count_op
(
skip_quant_prog
,
self
.
assertTrue
(
op_nums_1
==
op_nums_2
)
ops_without_weights
)
# test skip_quant
self
.
assertEqual
(
skip_ops_without_weights_count
,
self
.
assertTrue
(
quant_op_nums_1
-
2
==
quant_op_nums_2
)
ops_without_weights_count
)
self
.
assertTrue
(
convert_quant_op_nums_1
==
convert_quant_op_nums_2
)
self
.
assertEqual
(
skip_ops_with_weights_count
,
ops_with_weights_count
)
self
.
assertEqual
(
skip_quantizers_count_in_qat
+
2
,
def
get_op_number
(
self
,
prog
):
quantizers_count_in_qat
)
skip_quant_prog_onnx
=
convert
(
skip_quant_prog
,
place
,
config
=
config
)
skip_quantizers_count_in_onnx
=
self
.
count_op
(
skip_quant_prog_onnx
,
[
'quantize_linear'
])
self
.
assertEqual
(
quantizers_count
,
skip_quantizers_count_in_onnx
)
def
count_op
(
self
,
prog
,
ops
:
List
[
str
]):
graph
=
paddle
.
fluid
.
framework
.
IrGraph
(
graph
=
paddle
.
fluid
.
framework
.
IrGraph
(
paddle
.
framework
.
core
.
Graph
(
prog
.
desc
),
for_test
=
False
)
paddle
.
framework
.
core
.
Graph
(
prog
.
desc
),
for_test
=
False
)
quant_op_nums
=
0
op_nums
=
0
for
op
in
graph
.
all_op_nodes
():
if
op
.
name
()
in
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
]:
op_nums
+=
1
elif
op
.
name
()
==
'quantize_linear'
:
quant_op_nums
+=
1
return
op_nums
,
quant_op_nums
def
get_convert_op_number
(
self
,
prog
):
graph
=
paddle
.
fluid
.
framework
.
IrGraph
(
paddle
.
framework
.
core
.
Graph
(
prog
.
desc
),
for_test
=
True
)
quant_op_nums
=
0
op_nums
=
0
op_nums
=
0
dequant_num
=
0
for
op
in
graph
.
all_op_nodes
():
for
op
in
graph
.
all_op_nodes
():
if
op
.
name
()
not
in
[
'quantize_linear'
,
'dequantize_linear'
]
:
if
op
.
name
()
in
ops
:
op_nums
+=
1
op_nums
+=
1
elif
op
.
name
()
==
'quantize_linear'
:
return
op_nums
quant_op_nums
+=
1
return
op_nums
,
quant_op_nums
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录