strategy_config(dict, list(dict), optional): The strategy config. You can set single config to get multi-strategy config, such as
1. set ``Quantization`` and ``Distillation`` to get quant_aware and distillation compress config.
The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L24`_ .
The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
2. set ``Quantization`` and ``HyperParameterOptimization`` to get quant_post and hyperparameter optimization compress config.
The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L24`_ .
The HyperParameterOptimization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L73`_ .
The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L55`_ .
The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L107`_ .
2. set ``QuantPost`` and ``HyperParameterOptimization`` to get quant_post and hyperparameter optimization compress config.
The QuantPost config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L187`_ .
The HyperParameterOptimization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L160`_ .
3. set ``ChannelPrune`` and ``Distillation`` to get channel prune and distillation compress config.
The ChannelPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
The ChannelPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L254`_ .
The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L107`_ .
4. set ``ASPPrune`` and ``Distillation`` to get asp prune and distillation compress config.
The ASPPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
The ASPPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L268`_ .
The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L107`_ .
5. set ``TransformerPrune`` and ``Distillation`` to get transformer prune and distillation compress config.
The TransformerPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
The TransformerPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L278`_ .
The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L107`_ .
6. set ``UnstructurePrune`` and ``Distillation`` to get unstructureprune and distillation compress config.
The UnstructurePrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L91`_ .
The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
The UnstructurePrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L288`_ .
The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L107`_ .
7. set ``Distillation`` to use one teacher modol to distillation student model.
The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L107`_ .
8. set ``MultiTeacherDistillation`` to use multi-teacher to distillation student model.
The MultiTeacherDistillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L56`_ .
The MultiTeacherDistillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L134`_ .
9. set ``QuantPost`` to get quant_post compress config.
The QuantPost config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L187`_ .
If set to None, will choose a strategy automatically. Default: None.
target_speedup(float, optional): target speedup ratio by the way of auto compress. Default: None.
batch_size(int, optional): The batch size of DataLoader. Default: 1.
batch_nums(int, optional): If batch_nums is not None, the number of calibrate data is 'batch_size*batch_nums'. If batch_nums is None, use all data generated by sample_generator as calibrate data. Default: None.
lr(float, optional): The learning rate of Reconstruction Quanter. Default: 0.1.
algo(str, optional): Post-Training Quantization algorithm, can be set reference the algo from `<https://paddleslim.readthedocs.io/zh_CN/latest/api_cn/static/quant/quantization_api.html#quant-post-static>`. Default: 'hist'.
hist_percent(float, optional): The percentile of histogram for algo hist. Default: 0.999.
regions(list[list], optional): The list of some regions, each region is a subgraph of fp32 program and it will have exact 1 input operation and 1 output operation. When the recon-level is region, the reconstruction loss of each region is minimized. Default: None.
region_weights_names(list[list], optional): The weight names inside every region. Default: None.
recon_level(str, optional): The type of reconstruction granularity. Currently support ['layer-wise', 'region-wise'] types. Only when recon_level isn't None can Reconstruction Quanter be used. Default: None.
is_full_quantize(bool): If True, 'quantoze_op_types' will be TRANSFORM_PASS_OP_TYPES + QUANT_DEQUANT_PASS_OP_TYPES. Default: False.
bias_correct(list(bool)): Whether to use bias correction method of https://arxiv.org/abs/1810.05723. Default: False.
simulate_activation_quant(bool, optional): Whether we need the noise caused by activation quantization during the reconstruction process. Default: False.
skip_tensor_list(list): List of skip quant tensor name. Default: None.
onnx_format(bool): Whether to export the quantized model with format of ONNX. Default: False.
quantize_op_types(list(str)): Ops of type in quantize_op_types, will be quantized. Default: ['conv2d', 'depthwise_conv2d', 'mul', 'matmul', 'matmul_v2'].
weight_bits(int): Weight quantize bit num. Default: 8.
activation_bits(int): Activation quantize bit num. Default: 8.
'Warning! After analysis, the real model type is not transformer! If you encounter this situation, please raise an issue let us know in which case "get_patterns" determines model type is not transformer.'