提交 08536fca 编写于 作者: I itminner

add quantizaiton demo

上级 99599e57
import os
import sys
import logging
import paddle
import argparse
import functools
import math
import time
import numpy as np
import paddle.fluid as fluid
from paddleslim.prune import AutoPruner
from paddleslim.common import get_logger
from paddleslim.analysis import flops
sys.path.append(sys.path[0] + "/../")
from paddleslim.quant import quant_aware, quant_post, convert
import models
from utility import add_arguments, print_arguments
quantization_model_save_dir = './quantization_models/'
_logger = get_logger(__name__, level=logging.INFO)
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('batch_size', int, 64 * 4, "Minibatch size.")
add_arg('use_gpu', bool, True, "Whether to use GPU or not.")
add_arg('model', str, "MobileNet", "The target model.")
add_arg('pretrained_model', str, "../pretrained_model/MobileNetV1_pretained", "Whether to use pretrained model.")
add_arg('lr', float, 0.1, "The learning rate used to fine-tune pruned model.")
add_arg('lr_strategy', str, "piecewise_decay", "The learning rate decay strategy.")
add_arg('l2_decay', float, 3e-5, "The l2_decay parameter.")
add_arg('momentum_rate', float, 0.9, "The value of momentum_rate.")
add_arg('num_epochs', int, 120, "The number of total epochs.")
add_arg('total_images', int, 1281167, "The number of total training images.")
parser.add_argument('--step_epochs', nargs='+', type=int, default=[30, 60, 90], help="piecewise decay step")
add_arg('config_file', str, None, "The config file for compression with yaml format.")
add_arg('data', str, "mnist", "Which data to use. 'mnist' or 'imagenet'")
add_arg('log_period', int, 10, "Log period in batches.")
add_arg('test_period', int, 10, "Test period in epoches.")
# yapf: enable
model_list = [m for m in dir(models) if "__" not in m]
def piecewise_decay(args):
step = int(math.ceil(float(args.total_images) / args.batch_size))
bd = [step * e for e in args.step_epochs]
lr = [args.lr * (0.1**i) for i in range(len(bd) + 1)]
learning_rate = fluid.layers.piecewise_decay(boundaries=bd, values=lr)
optimizer = fluid.optimizer.Momentum(
learning_rate=learning_rate,
momentum=args.momentum_rate,
regularization=fluid.regularizer.L2Decay(args.l2_decay))
return optimizer
def cosine_decay(args):
step = int(math.ceil(float(args.total_images) / args.batch_size))
learning_rate = fluid.layers.cosine_decay(
learning_rate=args.lr, step_each_epoch=step, epochs=args.num_epochs)
optimizer = fluid.optimizer.Momentum(
learning_rate=learning_rate,
momentum=args.momentum_rate,
regularization=fluid.regularizer.L2Decay(args.l2_decay))
return optimizer
def create_optimizer(args):
if args.lr_strategy == "piecewise_decay":
return piecewise_decay(args)
elif args.lr_strategy == "cosine_decay":
return cosine_decay(args)
def compress(args):
############################################################################################################
# 1. quantization configs
############################################################################################################
quant_config = {
# weight quantize type, default is 'abs_max'
'weight_quantize_type': 'abs_max',
# activation quantize type, default is 'abs_max'
'activation_quantize_type': 'moving_average_abs_max',
# weight quantize bit num, default is 8
'weight_bits': 8,
# activation quantize bit num, default is 8
'activation_bits': 8,
# op of name_scope in not_quant_pattern list, will not quantized
'not_quant_pattern': ['skip_quant_dd'],
# op of types in quantize_op_types, will quantized
'quantize_op_types': ['conv2d', 'depthwise_conv2d', 'mul'],
# data type after quantization, default is 'int8'
'dtype': 'int8',
# window size for 'range_abs_max' quantization. defaulf is 10000
'window_size': 10000,
# The decay coefficient of moving average, default is 0.9
'moving_rate': 0.9,
# if set quant_weight_only True, then only quantize parameters of layers which need quantization,
# and insert anti-quantization op for parameters of these layers.
'quant_weight_only': False
}
train_reader = None
test_reader = None
if args.data == "mnist":
import paddle.dataset.mnist as reader
train_reader = reader.train()
val_reader = reader.test()
class_dim = 10
image_shape = "1,28,28"
elif args.data == "imagenet":
import imagenet_reader as reader
train_reader = reader.train()
val_reader = reader.val()
class_dim = 1000
image_shape = "3,224,224"
else:
raise ValueError("{} is not supported.".format(args.data))
image_shape = [int(m) for m in image_shape.split(",")]
assert args.model in model_list, "{} is not in lists: {}".format(
args.model, model_list)
image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
# model definition
model = models.__dict__[args.model]()
out = model.net(input=image, class_dim=class_dim)
cost = fluid.layers.cross_entropy(input=out, label=label)
avg_cost = fluid.layers.mean(x=cost)
acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
train_prog = fluid.default_main_program()
val_program = fluid.default_main_program().clone(for_test=True)
place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
############################################################################################################
# 2. quantization transform programs (training aware)
# Make some quantization transforms in the graph before training and testing.
# According to the weight and activation quantization type, the graph will be added
# some fake quantize operators and fake dequantize operators.
############################################################################################################
val_program = quant_aware(val_program, place, quant_config, scope=None, for_test=True)
compiled_train_prog = quant_aware(train_prog, place, quant_config, scope=None, for_test=False)
opt = create_optimizer(args)
opt.minimize(avg_cost)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
if args.pretrained_model:
def if_exist(var):
return os.path.exists(
os.path.join(args.pretrained_model, var.name))
fluid.io.load_vars(exe, args.pretrained_model, predicate=if_exist)
val_reader = paddle.batch(val_reader, batch_size=args.batch_size)
train_reader = paddle.batch(
train_reader, batch_size=args.batch_size, drop_last=True)
train_feeder = feeder = fluid.DataFeeder([image, label], place)
val_feeder = feeder = fluid.DataFeeder(
[image, label], place, program=val_program)
def test(epoch, program):
batch_id = 0
acc_top1_ns = []
acc_top5_ns = []
for data in val_reader():
start_time = time.time()
acc_top1_n, acc_top5_n = exe.run(
program,
feed=train_feeder.feed(data),
fetch_list=[acc_top1.name, acc_top5.name])
end_time = time.time()
if batch_id % args.log_period == 0:
_logger.info(
"Eval epoch[{}] batch[{}] - acc_top1: {}; acc_top5: {}; time: {}".
format(epoch, batch_id,
np.mean(acc_top1_n),
np.mean(acc_top5_n), end_time - start_time))
acc_top1_ns.append(np.mean(acc_top1_n))
acc_top5_ns.append(np.mean(acc_top5_n))
batch_id += 1
_logger.info("Final eval epoch[{}] - acc_top1: {}; acc_top5: {}".
format(epoch,
np.mean(np.array(acc_top1_ns)),
np.mean(np.array(acc_top5_ns))))
return np.mean(np.array(acc_top1_ns))
def train(epoch, compiled_train_prog):
build_strategy = fluid.BuildStrategy()
exec_strategy = fluid.ExecutionStrategy()
compiled_train_prog = compiled_train_prog.with_data_parallel(
loss_name=avg_cost.name,
build_strategy=build_strategy,
exec_strategy=exec_strategy)
batch_id = 0
for data in train_reader():
start_time = time.time()
loss_n, acc_top1_n, acc_top5_n = exe.run(
compiled_train_prog,
feed=train_feeder.feed(data),
fetch_list=[avg_cost.name, acc_top1.name, acc_top5.name])
end_time = time.time()
loss_n = np.mean(loss_n)
acc_top1_n = np.mean(acc_top1_n)
acc_top5_n = np.mean(acc_top5_n)
if batch_id % args.log_period == 0:
_logger.info(
"epoch[{}]-batch[{}] - loss: {}; acc_top1: {}; acc_top5: {}; time: {}".
format(epoch, batch_id, loss_n, acc_top1_n, acc_top5_n,
end_time - start_time))
batch_id += 1
############################################################################################################
# train loop
############################################################################################################
for i in range(args.num_epochs):
train(i, compiled_train_prog)
if i % args.test_period == 0:
test(i, val_program)
############################################################################################################
# 3. Freeze the graph after training by adjusting the quantize
# operators' order for the inference.
# The dtype of float_program's weights is float32, but in int8 range.
############################################################################################################
float_program, int8_program = convert(val_program, fluid.global_scope(), place, quant_config,
save_int8=True)
############################################################################################################
# 4. Save inference model
############################################################################################################
model_path = os.path.join(quantization_model_save_dir, args.model,
'act_' + quant_config['activation_quantize_type'] + '_w_' + quant_config[
'weight_quantize_type'])
float_path = os.path.join(model_path, 'float')
int8_path = os.path.join(model_path, 'int8')
if not os.path.isdir(model_path):
os.makedirs(model_path)
fluid.io.save_inference_model(
dirname=float_path,
feeded_var_names=[image.name],
target_vars=[out], executor=exe,
main_program=float_program,
model_filename=float_path + '/model',
params_filename=float_path + '/params')
fluid.io.save_inference_model(
dirname=int8_path,
feeded_var_names=[image.name],
target_vars=[out], executor=exe,
main_program=int8_program,
model_filename=int8_path + '/model',
params_filename=int8_path + '/params')
def main():
args = parser.parse_args()
print_arguments(args)
compress(args)
if __name__ == '__main__':
main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册