qat.py 6.3 KB
Newer Older
C
cc 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import argparse
import contextlib
import os

import time
import math
import numpy as np

import paddle
from paddle.distributed import ParallelEnv

from paddle.optimizer.lr import PiecewiseDecay
from paddle.metric.metrics import Accuracy
import paddle.vision.models as models

from paddleslim import QAT
from paddle.fluid.contrib.slim.quantization import ImperativeQuantAware

from imagenet_dataset import ImageNetDataset


def make_optimizer(step_per_epoch, parameter_list=None):
    assert FLAGS.lr_scheduler == 'piecewise'

    base_lr = FLAGS.lr
    lr_scheduler = FLAGS.lr_scheduler
    momentum = FLAGS.momentum
    weight_decay = FLAGS.weight_decay
    milestones = FLAGS.milestones

    boundaries = [step_per_epoch * e for e in milestones]
    values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
    learning_rate = PiecewiseDecay(boundaries=boundaries, values=values)

    optimizer = paddle.optimizer.Momentum(
        learning_rate=learning_rate,
        momentum=momentum,
        weight_decay=weight_decay,
        parameters=parameter_list)

    return optimizer


def main():
    # create model
    model_list = [x for x in models.__dict__["__all__"]]
    assert FLAGS.arch in model_list, \
        "Expected FLAGS.arch in {}, but received {}".format(
        model_list, FLAGS.arch)
    model = models.__dict__[FLAGS.arch](pretrained=not FLAGS.resume)

    # quantize model
    if FLAGS.enable_quant:
        if not FLAGS.use_naive_api:
            print("use slim api")
            quant_config = {
                'weight_quantize_type': FLAGS.weight_quantize_type,
            }
            dygraph_qat = QAT(quant_config)
        else:
            print("use navie api")
            dygraph_qat = ImperativeQuantAware(
                weight_quantize_type=FLAGS.weight_quantize_type, )
        dygraph_qat.quantize(model)

    # prepare
    model = paddle.Model(model)
    if FLAGS.resume is not None:
        print("Resume from " + FLAGS.resume)
        model.load(FLAGS.resume)

    train_dataset = ImageNetDataset(
        os.path.join(FLAGS.data, 'train'), mode='train')
    val_dataset = ImageNetDataset(
        os.path.join(FLAGS.data, FLAGS.val_dir), mode='val')

    optim = make_optimizer(
        np.ceil(
            float(len(train_dataset)) / FLAGS.batch_size /
            ParallelEnv().nranks),
        parameter_list=model.parameters())

    model.prepare(optim, paddle.nn.CrossEntropyLoss(), Accuracy(topk=(1, 5)))

    # test
    if FLAGS.eval_only:
        model.evaluate(
            val_dataset,
            batch_size=FLAGS.batch_size,
            num_workers=FLAGS.num_workers)
        return

    # train
    output_dir = os.path.join(FLAGS.output_dir, "checkpoint",
                              FLAGS.arch + "_checkpoint",
                              time.strftime('%Y-%m-%d-%H-%M', time.localtime()))
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    model.fit(train_dataset,
              val_dataset,
              batch_size=FLAGS.batch_size,
              epochs=FLAGS.epoch,
              save_dir=output_dir,
              num_workers=FLAGS.num_workers)

    # save
    if FLAGS.enable_quant:
        quant_output_dir = os.path.join(FLAGS.output_dir, FLAGS.arch, "model")
        input_spec = paddle.static.InputSpec(
            shape=[None, 3, 224, 224], dtype='float32')
        dygraph_qat.save_quantized_model(model.network, quant_output_dir,
                                         [input_spec])
        print("save all checkpoints in " + output_dir)
        print("save quantized inference model in " + quant_output_dir)


if __name__ == '__main__':
    parser = argparse.ArgumentParser("Training on ImageNet")

    # model
    parser.add_argument(
        "--arch", type=str, default='mobilenet_v2', help="model name")
    parser.add_argument(
        "--resume", default=None, type=str, help="checkpoint path to resume")
    parser.add_argument(
        "--eval_only", action='store_true', help="only evaluate the model")
    parser.add_argument(
        "--output_dir", type=str, default='output', help="save dir")

    # data
    parser.add_argument(
        '--data',
        metavar='DIR',
        default="",
        help='path to dataset '
        '(should have subdirectories named "train" and "val"')
    parser.add_argument(
        '--val_dir',
W
whs 已提交
157
        default="val",
C
cc 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
        help='the dir that saves val images for paddle.Model')

    # train
    parser.add_argument(
        "-e", "--epoch", default=1, type=int, help="number of epoch")
    parser.add_argument(
        "-b", "--batch_size", default=10, type=int, help="batch size")
    parser.add_argument(
        "-n", "--num_workers", default=2, type=int, help="dataloader workers")
    parser.add_argument(
        '--lr',
        default=0.0001,
        type=float,
        metavar='LR',
        help='initial learning rate')
    parser.add_argument(
        "--lr-scheduler",
        default='piecewise',
        type=str,
        help="learning rate scheduler")
    parser.add_argument(
        "--milestones",
        nargs='+',
        type=int,
        default=[1, 2, 3, 4, 5],
        help="piecewise decay milestones")
    parser.add_argument(
        "--weight-decay", default=1e-4, type=float, help="weight decay")
    parser.add_argument("--momentum", default=0.9, type=float, help="momentum")

    # quant
    parser.add_argument(
        "--enable_quant", action='store_true', help="enable quant model")
    parser.add_argument(
        "--use_naive_api", action='store_true', help="use the navie api")
    parser.add_argument(
        "--weight_quantize_type", type=str, default='abs_max', help="")

    FLAGS = parser.parse_args()
    assert FLAGS.data, "error: must provide data path"

    main()