test_skd_loss.py 3.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
sys.path.append("../")
import unittest
import paddle
from paddleslim.dist import merge, skd
from layers import conv_bn_layer
from static_case import StaticCase


class TestSKDLoss(StaticCase):
    def test_skd_loss(self):
        place = paddle.CPUPlace()
        exe = paddle.static.Executor(place)

        student_program = paddle.static.Program()
        student_startup = paddle.static.Program()
        with paddle.static.program_guard(student_program, student_startup):
            with paddle.utils.unique_name.guard():
                input = paddle.static.data(
                    name="image", shape=[None, 3, 224, 224])
                conv1 = conv_bn_layer(input, 8, 3, "conv1")
                conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
                student_predict = conv1 + conv2

        teacher_program = paddle.static.Program()
        teacher_startup = paddle.static.Program()
        with paddle.static.program_guard(teacher_program, teacher_startup):
            with paddle.utils.unique_name.guard():
                input = paddle.static.data(
                    name="image", shape=[None, 3, 224, 224])
                conv1 = conv_bn_layer(input, 8, 3, "conv1")
                conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
                sum1 = conv1 + conv2
                conv3 = conv_bn_layer(sum1, 8, 3, "conv3")
                conv4 = conv_bn_layer(conv3, 8, 3, "conv4")
                sum2 = conv4 + sum1
                conv5 = conv_bn_layer(sum2, 8, 3, "conv5")
                teacher_predict = conv_bn_layer(conv5, 8, 3, "conv6")

        exe.run(teacher_startup)
        exe.run(student_startup)

        data_name_map = {'image': 'image'}
        merge(teacher_program, student_program, data_name_map, place)
        merged_ops = []
        for block in student_program.blocks:
            for op in block.ops:
                merged_ops.append(op.type)
        with paddle.static.program_guard(student_program, student_startup):
            distill_loss = skd('teacher_' + teacher_predict.name,
                               student_predict.name,
                               program=None,
                               multiplier=None)

        loss_ops = []
        for block in student_program.blocks:
            for op in block.ops:
                loss_ops.append(op.type)
        print(f"ret: {set(loss_ops).difference(set(merged_ops))}")
        self.assertTrue(set(merged_ops).difference(set(loss_ops)) == set())

        self.assertTrue({
            'softmax_with_cross_entropy', 'softmax', 'reduce_mean', 'layer_norm'
        }.issubset(set(loss_ops).difference(set(merged_ops))))


if __name__ == '__main__':
    unittest.main()